
Compartmentalization and Privilege Management (CPM)
Howard Shrobe

DARPA
Information Innovation Office (I2O)

Proposers Day

March 2023

1Distribution Statement A: Approved for public release.  Distribution is unlimited.



CPM program objective

Develop a set of analysis tools, along with supporting hardware and software 
infrastructure, to automatically compartmentalize large legacy software systems 

into performant, limited-privilege, fine-grained compartments that prevent 
initial penetrations from turning into successful cyber attacks

2Distribution Statement A: Approved for public release.  Distribution is unlimited.



A compartment analogy

No single failure can sink the ship

Modern ships are divided into many compartments, 
each separated by a watertight bulkhead:

© NYT, 2020

A single shot at the water line could sink the ship

How ships used to be built:

3Distribution Statement A: Approved for public release.  Distribution is unlimited.

© Shutterstock Everett Collection



Example: Cyber attack against Ukraine power grid

• December 2015, Russian cyber hackers turned off 
power to Kyiv for several hours*

• Cyber attack was months-long campaign to gain 
control of the software and hardware that administers 
the Kyiv power grid

Send 
Phishing 

Email
User Clicks

Download 
Malware 
Packages

Install 
Keylogger

Kill
Disk

Execution at User Level

Sysadmin 
Logs In

Exfiltrate 
Sysadmin 

Credentials
Login as 
Sysadmin

Disable 
Operator 
Console

Disconnect 
From Grid

Execution at Full Privilege

Compartment and privilege management 
could have stopped the attack

4

* Inside the Cunning, Unprecedented Hack of Ukraine’s 
Power Grid, Kim Zetter, Wired. 3 March 2016

Lack of compartment and privilege management led to successful cyber attack

Distribution Statement A: Approved for public release.  Distribution is unlimited.

© Booz-Allen-Hamilton



Memory safety and compartmentalization would stop most campaigns

McKee, Derrick, et al. "Preventing kernel hacks with HAKC." Proceedings 2022
Network and Distributed System Security Symposium. NDSS. Vol. 22. 2022.

5

87% 
Protected

Memory Safety
34%

Compartmentalization
40%

Either
13%

Remaining
13%

Mitigation analysis of Linux kernel high severity CVEs

• Either: if memory safety or 
compartmentalization were present, 
the bug would not be exploitable

• Remaining: memory safety or 
compartmentalization would not 
mitigate the CVE

Distribution Statement A: Approved for public release.  Distribution is unlimited.

CVE: Common Vulnerabilities and Exposures



Compartmentalization and privilege management should be the 
norm in system design* 
• But it rarely is, particularly in legacy systems

Legacy systems over their lifetimes tend to become more 
unstructured and consequently less compartmentalized
• “In the long run every program becomes rococo - then rubble.”

Alan Perlis, former professor at Carnegie Mellon University and Yale, 
“Epigrams in Programming”

Software-only solutions are not performant; hardware support will be 
essential

Unusually long-lived critical legacy systems are the norm in DoD

Relevance to DoD

* ”The Protection of Information in Computer Systems”, Saltzer & Schroeder Fourth ACM Symposium on Operating System 
Principles (October 1973). Revised version in Communications of the ACM 17, 7 (July 1974). 

6

B-52 designed in 1947, first flight in 1952, in 
service with USAF 1955, 76 still in inventory

The scope of this problem is unique to DoD and will not be addressed by industry

Distribution Statement A: Approved for public release.  Distribution is unlimited.

Credit: Airman 1st Class Victor J Caputo/ commons.wikimedia.org.



CPM program structure

TA2: Enforcement
• Develop processor architectures and system software that will, with low 

overhead, enforce a compartment and privilege level regime that prevents 
initial penetrations from propagating into a successful cyber attack

TA3: Evaluation Support
• Develop a library of attack campaigns that can be used as open-source test cases 

for the combined TA1-TA2 systems.  Evaluate the success rate and overhead of the 
systems defended by TA1—TA2 systems versus the baseline unprotected systems

TA4: DoD System Experimentation (delayed solicitation)
• Apply CPM tools to a modest number of existing, proprietary DoD systems and 

evaluate the difficulty and efficacy of defending these systems

TA1: Automated Compartmentalization
• Develop software analysis tools that automatically compartmentalize 

legacy code and manage privilege levels to prevent initial penetrations 
from propagating

7

Compartment 
Specification

Enforcement
Engine

Protected
System

Victim 
System

Automated
Compartmentalization

Regression
Suite

Human
Annotation

Compartment 
Specification

Vulnerability
Insertion

Victim 
System

Automated 
Attacks

Legacy
System

National 
Vulnerability

Database

Regression
Suite

Automated
Red

Teaming

Distribution Statement A: Approved for public release.  Distribution is unlimited.

TA: Technical Area



The CPM abstract model*: Compartments, principals, access rules

Y

Y Y Y

Principal-1

Principal-2

Principal-3

Principal-n

C-1

C-2

C-3

C-4

C-5

C-nLoad

Y

Y

Y

Y

trap trap trap trap

traptraptrap

trap trap trap trap

traptraptraptrap

Y

8

Compartment
Collection of data with a specific purpose

Principal
An active entity playing a specific role

Access rules
• For each compartment and each principal, a matrix specifying 

which operations are legitimate
• Collectively forms a policy restricting flow of data between 

compartments and integrity of data within each compartment
• Principal changes are controlled with “gate calls”

* Trust-management, intrusion-tolerance, accountability, and reconstitution 
architecture (TIARA), Shrobe, Howard, Andre DeHon, and Thomas Knight. 
MASSACHUSETTS INST OF TECH CAMBRIDGE, 2009.

• Everything, including data, code, Principals 
and Compartments, are represented as 
objects within a compartment

• Each executing thread has a Principal 
(who it’s acting for and in what role)

…

…

trap A trap is a hardware generated 
interrupt of the running process, 
indicating that something has 
gone wrong.  Control is diverted 
to a software “trap handler” that 
can either fix what’s wrong or 
terminate the program.

Distribution Statement A: Approved for public release.  Distribution is unlimited.



The CPM abstract model: Change of principal

Gate

Compartment 1
Read, Write

Compartment 2
Read

Compartment 3
Read

Compartment 1
Read

Compartment 4
Read, Write

Compartment 5
Read

9

• The privileges accorded to the new principal are only those needed to perform the 
function of the procedure and are not strictly greater than those of the old principal

• Gate calls are themselves objects within a compartment and are subject to access 
control rules, so only some transitions are possible within each context

Transition to a new principal can only be achieved through a ”gate call” –
a procedure call that changes the principal for the duration of the called procedure

hardware 
supported

Principal 1 Principal 2

Distribution Statement A: Approved for public release.  Distribution is unlimited.



5321

TA1: Automated compartmentalization – dynamic analysis approach

Regression
suite

Instrumented
execution

Observed 
accesses per 
instruction

4

Clustering
& 

optimization

Enforcement
mechanism
parameters

1. A large corpus of legitimate programs, run on legitimate inputs, acts 
as a surrogate for the intended policy

2. Instrumented execution records how each instruction accesses each 
piece of data and in what context

3. Individual instructions and individuals pieces of data are aggregated 
into larger cluster

• Clustering decreases the overhead due to context switching
• Clustering increases the “over-privileging” of each context

4. Optimization finds the best trade-off given the costs of the 
enforcement mechanism

5. Output of optimization is specification of compartments and 
enforceable policy for privileges

Compartments & 
privileges

10

Data

Processes

Key

SCALPEL: Exploring the Limits of Tag-enforced Compartmentalization. Nick Roessler and André 
DeHon, University of Pennsylvania, USA

Distribution Statement A: Approved for public release.  Distribution is unlimited.



Examples of experimental compartmentalization systems

SCALPEL: Exploring the Limits of 
Tag-enforced Compartmentalization

Nick Roessler and André DeHon, University of Pennsylvania, USA
Preventing Kernel Hacks with HAKC

Derrick McKee*, Yianni Giannaris†, Carolina Ortega Perez†, Howard Shrobe†, Mathias Payer‡,
Hamed Okhravi§, and Nathan Burow§

*Purdue University, †MIT CSAIL, ‡EPFL, §MIT Lincoln Laboratory

11

RLBOX: Retrofitting Fine Grain 
Isolation in the Firefox Renderer

Shavan Narayan and Craig Disselkoen, UC San Diego; Tal Garfinkel, Stanford University; 
Nathan Froyd and Eric Rahm, Mozilla; Sorin Lerner, UC San Diego; Hovav Shacham, UT Austin; 

Deian Stefan, UC San Diego

Overhead impacts normalized to unmodified 
kernel when transferring various sized payloads.

Pe
rf

or
m

an
ce

 ra
tio

 
(m

od
ifi

ed
/o

rig
in

al
)

Distribution Statement A: Approved for public release.  Distribution is unlimited.

SFI: Software-based Fault Isolation (i.e., Native 
Client [NaCl] sandboxes)

Process: Isolation in individual processes with 
IPC communication and synchronization



Dynamic analysis may under-privilege
• The regression suite may never make an access that is actually legitimate

Static analysis may over-privilege
• It is computationally too expensive to do a completely accurate static analysis
• Therefore all analysis techniques approximate, allowing some accesses that aren’t 

legitimate

CPM will develop techniques for merging the two, yielding a more accurate policy

Human annotation may be needed to communicate higher-level insights, but 
requiring too much may make the approach impractical

• For legacy systems the intended design is often obscured by years of patching and 
incremental development

• Nobody may actually understand the entire system design

TA1 challenges

12Distribution Statement A: Approved for public release.  Distribution is unlimited.



13

• Develop tools that can target multiple TA2 enforcement systems
• Present a clear path for scaling the proposed approach to very large code bases and to a variety of 

workloads (e.g., programs that are heavily interactive, Input/Output-intensive, pointer-intensive, etc.)
• Describe what sort of manual annotation is anticipated and how the need for manual annotation will be 

minimized
• Identify the key technical risks of the proposed approach, describe how they will be tracked, and 

suggest possible mitigations

Characteristics of a strong TA1 proposal

Distribution Statement A: Approved for public release.  Distribution is unlimited.



TA2: Enforcement

• Compartment privileges and transition rules 
for principals must be enforced and require 
hardware assistance for performance*

• Some support in existing hardware (e.g., Arm’s 
pointer authentication and memory tagging 
instructions)

• More robust and adaptable support evolving in 
research hardware such as Capabilities and 
Programmable Metadata Processing

• Available enforcement mechanisms expected 
to affect compartmentalization decisions

14

* "SoftBound: Highly compatible and complete spatial memory safety for C“, Nagarakatte, Santosh, et al., 
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation. 2009

ALU: Arithmetic Logic Unit
PEE: Privilege Enforcement Engine

Thread’s
Principal

Register File Result 
Data

PEE

Operand 1

Operand 2

Tag 1

Instruction Result Tag

Trap Signal

A
L
U

Tag 2

Memory

Bounds
Type

Compartment

Conventional Computer

Meta-computing system

Access Rules

Meta 
Data

Data

Meta 
Data

Data

Distribution Statement A: Approved for public release.  Distribution is unlimited.



Examples of experimental enforcement systems

15

CHERI RISC-V

Enforces a more limited model
• Less context sensitive
• Open to “Confused Deputy” 

problems
• Temporal memory safety issues
• Performance still needs 

improvement

Dover
A Metadata-Extended RISC-V

Enforces more complete model
• Less mature 
• Programmable policies
• High memory overhead

HACKC
(simulated Arm 8.5A)

• Evaluated in two kernel modules 
• Analysis done only in simulation

CRASH and SSITH systems (experimental) Commercial

© Robert N. M. Watson

© ARM, Ltd

Distribution Statement A: Approved for public release.  Distribution is unlimited.

Clean-slate design of Resilient Adaptive, Secure Hosts           (CRASH)
System Security Integration Through Hardware and Firmware (SSITH)
Capability Hardware Enhanced RISC Instructions                  (CHERI)
Reduced Instruction Set Computer                                        (RISC)
Hardware-Assisted Kernel Compartmentalization                  (HACKC)



16

• Early simulated performance numbers for use by TA1 in determining optimal compartmentalization and 
privilege management strategies

• Plans for incorporating feedback from TA1 into the processor design and analysis process
• Timely hardware instantiations of the proposed processors, where timely means realistic, hardware-in-

the-loop measurements of end-to-end systems can be conducted
• Descriptions of assumptions or limitations of the proposed approach to different workloads (e.g., 

frequent privilege policy changes, pointer-intensive, large vs small memory allocations, etc.)
• Identify the key technical risks of the proposed approach, describe how they will be tracked, and 

suggest possible mitigations

Characteristics of a strong TA2 proposal

Distribution Statement A: Approved for public release.  Distribution is unlimited.



17

• Generate victim system and automate attacks
• Analyze protection
• Analyze performance

Experimental design

• Build the compartmentalization structure
• Build the protected system

Vulnerability
insertion

Victim 
system

Automated 
attacks

Legacy
system

National 
Vulnerability

Database

Automated
compartmentalization

Regression
suite

Human
annotation

Compartment 
specification

Enforcement
engine

Protected
system

Automated
red

teaming

TA3

TA1

TA2

Distribution Statement A: Approved for public release.  Distribution is unlimited.



Experimental design: Final outputs

% Lines of 
manual 

annotation
Compartment 

size
Over-

privilege ratio Analysis time

CPM
specification

Protected
system

Victim 
system

Automated 
attacks

18

Artifacts

Metrics

Evaluation Automated 
compartmentalization

Enforcement

% Attacks 
blocked

CPU
overhead

Memory
overhead

Regression 
suite

Automated 
compartmentalization 

(TA1)

Enforcement
(TA2)

Distribution Statement A: Approved for public release.  Distribution is unlimited.



19

• Describe how all of the program metrics will be measured, including those metrics that do not involve 
vulnerability testing

• Present a methodology for finding or creating vulnerable open-source systems (i.e., victim systems) and 
unclassified, non-sensitive attacks campaigns that are known to exploit victim system vulnerabilities.  
This includes user-space applications that are not currently selected as well as Linux

• Include an automated testing procedure for executing attack campaigns against victim systems and 
reporting outcomes

• Identify the key technical risks of the proposed approach, describe how they will be tracked, and 
suggest possible mitigations

Characteristics of a strong TA3 proposal

Distribution Statement A: Approved for public release.  Distribution is unlimited.



20

Reach far and risk failing
• If you aren’t proposing things that might not work
• If your only risk is that another performer might not deliver

Then you are probably not going to wow us

Manage technical risk, don’t avoid it
• Tell us what your risks are, particularly your technical risks
• Tell us how you will know if something isn’t working out
• Tell us how you plan to respond when you realize something isn’t working

A few words about technical risk

Distribution Statement A: Approved for public release.  Distribution is unlimited.



Program metrics

* This goal comes from the Microsoft BlueHat competitions

21Distribution Statement A: Approved for public release.  Distribution is unlimited.

Capability Metric Phase 1 -- OS Phase 2 -- Applications

Performant

% attacks blocked > 50% > 85%

CPU overhead* < 15% < 5%

Memory overhead < 50% <25%

Fine-grained, 
limited-privilege

Compartment size Individual function Individual function

Over privilege ratio < 2% < 1.5%

Automated 
compartmentalization

Analysis time < 1 week < 1 day
% Lines of manual 

annotation < 2% < 0.2%



Milestones

Automated 
Compartmentalization

Evaluation

DoD System  
Experimentation

Initial 
prototype

Experiment
on initial
challenge set

Incorporate 
performance
data

Experiment
on app
challenge set

Initial OS
challenge 
set

Final OS
challenge set

Initial app
challenge set

Final app
challenge set

App
evaluation

Solicitation Awards Preliminary
results

Final
results

22

Enforcement

Simulation 
model

Performance 
estimate

Initial 
design

FPGA Updated
design & FPGA

OS
evaluation

Red arrows indicate dependencies between tasks

Technology 
Showcase

FY24 FY25 FY26 FY27
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Distribution Statement A: Approved for public release.  Distribution is unlimited.

Field Programmable Gate Array (FPGA)
Operating System (OS)



Other relevant DARPA programs

DARPA program Relevance to CPM program
Clean-slate design of Resilient Adaptive, 

Secure Hosts
(CRASH)

Introduced idea of hardware enforced ”inherent security” through use of 
pervasive meta-data and policy engine

Mission-oriented Resilient Clouds
(MRC) Applied CRASH ideas in the distributed systems context

System Security Integration Through 
Hardware and Firmware

(SSITH)
Developed more efficient meta-data oriented hardware enforcement with 
attention to SWAP (size weight and power).

High-Assurance Cyber Military Systems
(HACMS) Developed software enforced coarse grained compartmentalization 

Verified Security and Performance 
Enhancement of Large Legacy Software

(V-SPELLS)
Using decomposition of legacy software into separate modules to reduce 
verification burden

23Distribution Statement A: Approved for public release.  Distribution is unlimited.



www.darpa.mil

24Distribution Statement A: Approved for public release.  Distribution is unlimited.


	Compartmentalization and Privilege Management (CPM)
	CPM program objective
	A compartment analogy
	Example: Cyber attack against Ukraine power grid
	Memory safety and compartmentalization would stop most campaigns
	Relevance to DoD
	CPM program structure
	The CPM abstract model*: Compartments, principals, access rules
	The CPM abstract model: Change of principal
	TA1: Automated compartmentalization – dynamic analysis approach
	Examples of experimental compartmentalization systems
	TA1 challenges
	Characteristics of a strong TA1 proposal
	TA2: Enforcement
	Examples of experimental enforcement systems
	Characteristics of a strong TA2 proposal
	Experimental design
	Experimental design: Final outputs
	Characteristics of a strong TA3 proposal
	A few words about technical risk
	Program metrics
	Milestones
	Other relevant DARPA programs
	Slide Number 24
	BACKUP
	Automated compartmentalization – static analysis
	Experimental Design: Generate Victim System and Attacks
	Experimental Design: Build The Compartmentalization Structure
	Experimental Design: Build The Protected System
	Experimental Design: Protection Analysis
	Experimental Design: Performance Analysis



