
Broad Agency Announcement
Machine learning and Optimization-guided
Compilers for Heterogeneous Architectures

(MOCHA)
INFORMATION INNOVATION OFFICE

HR001124S0035

August 3, 2024
Amendment 1

September 16, 2024

This publication constitutes a Broad Agency Announcement (BAA) as contemplated in Federal
Acquisition Regulation (FAR) 6.102(d)(2) and 35.016 and 2 CFR § 200.203. Any resultant award
negotiations will follow all pertinent law and regulation, and any negotiations and/or awards for

procurement contracts will use procedures under FAR 15.4, Contract Pricing, as specified in the BAA.

AMENDMENT 1

BAA HR001124S0035 is amended to:
1. extend the Question Submittal Close date to September 26, 2024, at 1:00 PM ET; and
2. extend the Proposal Due Date / BAA Closing Date to October 10, 2024, at 1:00 PM ET.

All changes will be highlighted.

OVERVIEW INFORMATION:

 Federal Agency Name – Defense Advanced Research Projects Agency (DARPA),
Information Innovation Office

 Funding Opportunity Title –Machine learning and Optimization-guided Compilers for
Heterogeneous Architectures (MOCHA)

 Announcement Type – Initial Announcement

 Funding Opportunity Number – HR001124S0035

 Assistance Listing Number: 12.910 Research and Technology Development

 Dates/Time - All Times are Eastern Time Zone (ET)
o Posting Date: August 3, 2024
o Proposers Day: August 5, 2024
o Proposal Abstract Due Date: August 22, 2024, at 1:00 PM
o Question Submittal Closed: September 26, 2024, at 1:00 PM
o Proposal Due Date / BAA Closing Date: October 10, 2024, at 1:00 PM

 Anticipated individual awards - Multiple awards are anticipated.

 Types of instruments that may be awarded – Procurement contract, Other Transaction for
Agreement, or Cooperative Agreement.

 NAICS Code: 541715

 Agency contact
The BAA Coordinator for this effort may be reached at:
MOCHA@darpa.mil
DARPA/I2O
ATTN:HR001124S0035
675 North Randolph Street
Arlington, VA 22203-2114

mailto:MOCHA@darpa.mil

Section I: Funding Opportunity Description

The Defense Advanced Research Projects Agency (DARPA) is soliciting innovative proposals in
the technical areas of compiler design, programming languages, and optimization. Proposed
research should investigate innovative approaches that enable revolutionary advances in science,
devices, or systems. Specifically excluded is research that primarily results in evolutionary
improvements to the existing state of practice.

Introduction

For over three decades, hardware and software developers could rely on improved performance
through increases in microprocessor clock speeds. This scaling broke down in the mid-2000s and
attention shifted to new architectural features, such as multithreading. That’s because today’s
technology, clock speed alone cannot lead to higher performance. Multithreading also has its
limits and modern systems are increasingly using a variety of specialized co-processors and
accelerators that are designed for high performance in specific domains and on specific tasks.

Traditional compilers are not designed to generate efficient machine code for such heterogenous
ensembles of Central Processing Units (CPUs), Graphics Processing Units (GPUs), and other
accelerators. Instead, software developers write unique code and libraries to take advantage of
specialized hardware, reducing productivity and losing much of the potential benefit of these
hardware components. Extending compilers to handle this heterogeneity is currently a manual
task that is performed by compiler experts. Adapting current compilers is time consuming and
error prone, does not address the challenge of taking advantage of hardware accelerators, and
does not improve our ability to upgrade mission-critical systems in a timely manner.

MOCHA seeks to build a new generation of compiler technology that can realize the full
potential performance of a system comprising multiple heterogenous computational elements. It
will accomplish this goal by 1) using data driven methods, machine learning (ML), and advanced
optimization techniques to rapidly adapt compilers to new hardware components with little
human effort and 2) developing new internal representations and programming languages that
enable compilers to determine how to make optimal use of available hardware, rather than
depending on humans to do so. Without this capability, the Department of Defense (DoD) and
the commercial world remain constrained by current compiler technologies and lack the ability
to fully and rapidly capitalize on emerging specialized hardware.

Background

Traditional compilers have an “hourglass” architecture:
 At the top of the hourglass, a variety of programming language-specific front ends analyze

the source code and transform it into a single intermediate representation (IR).
 This single IR acts as the “neck” of the hourglass, containing an ensemble of transformations

that optimize the IR.
 Finally, there are a variety of hardware-specific backends guided by performance models of

the target hardware and transform the optimized IR into machine code. These serve as the
base of the hourglass.

This hourglass model has worked well for many years, but it is not well matched to the
challenges presented by current and future heterogeneous computing environments (Figure 1).

USAFphoto by A1CAdam R. Shanks

Flight
Controls

CPU

Signal
Processing

DSP

Object
Detection

© University of Michigan

Transmuter

Graphics

GPU

Security

CC BY 3.0 Pauli Rautakorpi

Crypto Processor

Object
Classification

© Google

TPU

Figure 1 Tomorrow's compute environment

All components of today’s compilers are hand-crafted and hand-tuned. The cost of maintaining
the compiler’s performance models and optimizations, in addition to the cost of adding support
for a new hardware accelerator or source language, has been rising significantly over time.
Meanwhile, the return on investment has been drastically declining (see Figure 2 and Figure 3).

"LLVM 11 tends to take 2x longer
to compile code with
optimizations, and as a result
produces code that runs 10- 20%
faster (with occasional outliers in
either direction), compared to
LLVM 2.7 which is more than 10
years old." Arseny Kapoulkine

Takeaw ay: much like Moore's Law, performance improvements due to
advances in compilers seem to be hitting a plateau…

LLVM performance clang-2.8 (2010) to clang-11 (2020)
600

500

400

300

200

100

0
Meshlets Simplify Adjacency Cache Reindex SimplifySloppy Overdraw CacheFifo Stripify IndexEncode SpatialSort IndexDecode

LLVM 2.7 LLVM 11

[Credit: ISAT Heterogeneity Crisis]

Figure 2 Cost of compiler maintenance

Methodology: Compared clang 2.7 vs. 11 with – O2 on meshoptimizer library

Figure 3 Benefit of compiler developer effort

The current approach to building compilers is also ill-suited to dealing with flexible and
heterogenous target architectures. Today’s alphabet soup environment of CPUs, GPUs, Tensor
Processing Units (TPUs), Field Programmable Gate Arrays (FPGAs), Application-Specific
Integrated Circuit (ASICs), and System-on-a-Chip (SoCs) will become even more complex as
new packaging technologies, such as chiplets and 3D integration, enable rapid revisions of an
architecture, replacing one hardware component with another and easily incorporating wholly
new components.

Today's compilers will not work well for a program that is written in a hardware-agnostic
manner, but targets a heterogeneous ensemble of CPUs, GPUs, accelerators, and other
computational elements (CE). The single IRs of traditional compilers cannot adequately
represent the characteristics of all the elements of the ensemble, making the optimization passes

ineffective. Furthermore, to perform optimizations, the compiler must have a model of the
performance characteristics of each of the CEs, as well as the cost of switching computations
between CEs. These performance models are expensive to build by hand and are not always
accurate. In a future where static, monolithic hardware is supplanted by easily upgraded custom
heterogeneous hardware, we will need to program at a higher, hardware-agnostic level and leave
the determination of where to perform which computations up to the compiler.

Technical Area

The MOCHA program will have a single technical area: Compiler Technology. As discussed
above and below, this technical area encompasses several distinct compiler components and
proposals may address one or more individual components or the entire compiler toolchain.

One key insight motivating the MOCHA program is that each step of the compilation process is
driven by performance models of the target CEs (and of the communication fabric). Building
these models by hand is a bottleneck MOCHA intends to address by enabling rapid adaptation of
compilers to novel CEs and to novel ensembles of existing components. It is a premise of the
MOCHA program that these models can be generated using data-driven and ML techniques and
that these techniques will not require costly (in human time) data collection and curation.
Instead, the MOCHA approach would be to generate code and measure its performance on the
target CE or to mine architectural documents for the relevant performance information.

The MOCHA program envisions updating the three-tier architecture found in current compilers
to include:

 A front-end that incorporates hardware-agnostic domain-specific languages, determines
how to partition the computation into modules, and decides which modules should be
directed to which CE.

 A middle-end, potentially wider than the hourglass model, which will contain a variety of
intermediate forms, each likely associated with its own optimization suite, that is targeted
to a specific type of CE [5,10]. Intermediate forms and their associated optimization
suites may traverse many levels of abstraction [5,10]. The choice of which optimizations
to perform and in which order are again informed by performance models of the target
CEs. These performance models will be learned using data-driven and ML techniques
[2,3,4].

 A back end that will generate code sequences that are subject to multiple performance
figures of merit (i.e., throughput, power consumption, memory footprint). Back-end
performance models will also be learned from sources such as physical hardware,
hardware simulations, and hardware specifications [1,9] and will incorporate both
intrinsic CE performance, as well as costs to move data to/from/between CEs.

 Finally, advanced end-to-end optimization techniques and novel representations [7,8] will
be needed to manage the huge search space of possible implementations of a source
program.

The MOCHA program is soliciting proposals to address one or more of the technical challenges
outlined above. A proposal may address one or more specific challenges (e.g., optimization
selection, performance modeling for back-end code generation, partitioning and mapping of

source code) or may address the entire compiler toolchain. The MOCHA program assumes that a
static collection of CEs available for code execution is specified at compile time. Although the
potential value of runtime allocation of computations to CEs is recognized, such solutions are not
sought under this announcement.

Proposals to assemble a complete compiler toolchain are strongly encouraged to include a plan to
incorporate technology from other MOCHA program teams that are addressing a single or
limited number of technical challenges.

All proposals should leverage or build on existing compiler frameworks such as LLVM1 or the
GNU Not Unix (GNU) compiler collection. Components that are not dependent on a larger
compiler toolchain should nonetheless present a plan to accommodate test and evaluation within
such an environment. Proposals building on proprietary compiler frameworks will be considered
if the artifacts produced under the MOCHA program are independently evaluable and are
delivered to the government.

A strong proposal will:
 Specify what aspect(s) of the compiler are being addressed and how the contributions are

expected to aid in meeting program objectives (i.e., reduction of human effort and
performance of compiled code).

 Show how the proposed contributions will interoperate with common compiler toolchains
(e.g., LLVM).

 Identify the key technical risks of the proposed approach, describe how those risks will
be tracked, and suggest possible mitigations.

 Include team members with a history of successful contributions to the compiler
framework around which the proposed work will be centered.

 Incorporate a plan to assure the results are available and sustained after the program ends;
for example, through integration into an open-source project developed during the
MOCHA program.

In addition to the above, for proposals addressing the complete compiler toolchain, a strong
proposal will also include a mechanism and plan for incorporating the work of other performers
into the proposed compiler toolchain.
Program Structure

The MOCHA program is a 36-month effort, divided into annual segments with a preliminary and
final performance assessment in each performance year (Figure 4). For pricing purposes,
proposers should assume an April 2025 start date. For pricing travel, assume a kickoff meeting
will be held in the Washington, DC area and Principal Investigator (PI) meetings will be held
every 6-months, alternating between the east and west coasts of the United States.

1 LLVM originally stood for Low Level Virtual Machine, however the project has expanded, and the name is no
longer an initialism.

The government anticipates technologies generated and developed under MOCHA may require
several years to mature. Each performance year, performers should plan to develop technologies
that are technological prerequisites for the succeeding year.

FY25 FY26 FY27 FY28

Learning back-end performance models
CPU computation

Power consumption
GPUs

Accelerator (AI, ASIC, ...)
Learning to apply IR-based optimizations

Conventional CPUs
Vectorizing CPUs

GPUs
Application-specific hardware

Learning to allocate code segments to
hardware components

Using source annotations
Modeling data motion

Developing hardware agnostic languages
Recognizing patterns in code

End-to-end optimization
Learning to generate training corpora
End-to-end Optimization frameworks

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

Evaluation 1 2 3

Figure 4 MOCHA program schedule

Figure 4 is intended to be an example of the types of detailed dependencies and prerequisites
MOCHA performers will need to address. The program-level focus of MOCHA is encouraged to
be at the roll-up level, with the primary focus for Performance Year 1 being on back-end
technology that will allow the rapid construction of performance models to guide code
generation. Performance Year 2 should incorporate data-driven and ML techniques that inform
optimization selection and ordering, as well as the construction of relevant intermediate forms.
Performance Year 3 should incorporate front-end techniques for partitioning source code into
modules and mapping these to relevant CEs.

The experimental setup for assessment should involve several elements:
1. Number of CEs in the computing fabric
2. Number of distinct types of CEs in the computing fabric
3. Number of criteria (e.g., throughput, power consumption, memory footprint) in the

compiler’s figure of merit
4. Size of the source code being compiled.

These assessment elements should increase in each performance year (see Figure 5). For each
annual assessment cycle there will be a mini-assessment at 6-month boundaries to validate the
assessment suite and ensure performer progress remains aligned with program goals (1.1, 2.1,
3.1), and a full assessment at yearly boundaries (1.2, 2.2, 3.2).

Eval
#

#
Component Types

Total #
Components

Criteria in
Figure of Merit

Source Code
Size

1.1 2 2 1 10,000
1.2 2 4 1 25,000
2.1 3 6 2 50,000
2.2 4 8 2 100,000
3.1 5 10 3 500,000
3.2 6 12 3 1,000,000

Figure 5 Experimental conditions

Program Metrics

Two key metrics will guide the program:
1. Human effort reduction, specifically, how much human effort is required to

accommodate a new heterogeneous computing ensemble. This will be measured by the
number of lines of compiler annotations that are required.

2. Performance of the compiled code (throughput, power consumption, memory footprint)
compared to results from conventional approaches.

For middle- and back-end components, human effort will be measured by the number of lines of
code or annotation (e.g., @GPU, @loop_unroll, @nosideefects) that is required to construct a
new performance model or orchestrate a collection of optimizations using tools and techniques
developed under the MOCHA program. For front-end components, human effort will be
measured by the number of lines of code or annotation that is required to enable the compiler to
effectively identify modules and code segments that can exploit distinct CEs and allocate those
segments to the CEs. In both cases, the time required to build the toolchains or languages is not
being measured, just the time to adapt them to specific test cases.

As discussed above, performance models are expected to model not just computational
throughput, but also power consumption and memory requirements, which will in turn enable the

compiler to optimize code generation against any of those three measures. Thus, the MOCHA
performance metric will be measured along each of those dimensions.

Program performance targets are shown in Figure 6 below.

Metric Year 1 Year 2 Year 3
Human effort reduction 50% 75% 90%

Code performance gain 1x 2.5x 5x
Figure 6 MOCHA performance objectives

Intellectual Property

A goal of MOCHA is to develop new technologies that enable compilers to rapidly support a
growing proliferation of heterogeneous computing elements. The majority of compiler toolchains
today are open-source products. A successful incorporation of MOCHA research into the
compilers used by DoD and the Defense Industrial Base (DIB) is expected to require
incorporation into one of the open-source projects. Thus, to the maximum extent possible,
creating open-source software is strongly encouraged. At a minimum the Government desires all
noncommercial software (including source code), software documentation, hardware designs and
documentation, and technical data generated under the program be delivered to the Government,
with a minimum of Government Purpose Rights.

Section II: Evaluation Criteria

 Proposals will be evaluated using the following criteria listed in descending order of
importance: Overall Scientific and Technical Merit, Potential Contribution and Relevance
to the DARPA Mission, and Cost Realism.

o Overall Scientific and Technical Merit: The proposed technical approach is innovative,
feasible, achievable, and complete. The proposed technical team has the expertise and
experience to accomplish the proposed tasks. Task descriptions and associated technical
elements provided are complete, with all proposed deliverables clearly defined such that
a final outcome that achieves the goal can be expected as a result of award. The proposal
identifies major technical risks of the proposed approach and planned mitigation efforts
are clearly defined and feasible.

o Potential Contribution and Relevance to the DARPA Mission: The potential
contributions of the proposed effort bolster the national security technology base and
support DARPA’s mission to make pivotal early technology investments that create or
prevent technological surprise. The proposer clearly demonstrates its capability to
transition the technology into a self-sustaining compiler community. In addition, the
evaluation will take into consideration the extent to which the proposed intellectual
property (IP) rights structure will potentially impact the Government’s ability to
transition the technology.

o Cost Realism: The proposed costs are realistic for the technical and management
approach and accurately reflect the technical goals and objectives of the solicitation. The
proposed costs are consistent with the proposer's Statement of Work and reflect a
sufficient understanding of the costs and level of effort needed to successfully accomplish
the proposed technical approach. The costs for the prime proposer and proposed sub
awardees are substantiated by the details provided in the proposal (e.g., the type and
number of labor hours proposed per task, the types and quantities of materials, equipment
and fabrication costs, travel and any other applicable costs and the basis for the
estimates). It is expected that the effort will leverage all available relevant prior research
to obtain the maximum benefit from the available funding. For efforts with a likelihood
of commercial application, appropriate direct cost sharing may be a positive factor in the
evaluation. DARPA recognizes that undue emphasis on cost may motivate proposers to
offer low-risk ideas with minimum uncertainty and to staff the effort with junior
personnel to be in a more competitive posture. DARPA discourages such cost strategies.

 Unless otherwise specified in this announcement, for additional information on how DARPA
reviews and evaluates proposals through the Scientific Review Process, please visit: Proposer
Instructions and General Terms and Conditions.

https://www.darpa.mil/work-with-us/proposer-instructions
https://www.darpa.mil/work-with-us/proposer-instructions

Section III: Submission Information

 This announcement allows for the award of multiple instrument types to include Procurement
Contracts, Cooperative Agreements, and Other Transactions. Some award instrument types
have specific cost-sharing requirements (e.g., Research Other Transactions). The following
websites are incorporated by reference and contain additional information regarding overall
proposer instructions, general terms and conditions, and each specific award instrument type.

o Proposer Instructions and General Terms and Conditions: Proposer Instructions and
General Terms and Conditions

o Procurement Contracts: Proposer Instructions: Procurement Contracts
o Assistance (Grants and Cooperative Agreements): Proposer Instructions:

Grants/Cooperative Agreements
o Other Transaction agreements: Proposer Instructions: Other Transactions

 This announcement contains an abstract phase. Abstracts are strongly encouraged, but not
required. Abstracts are due August 22, 2024, at 1:00 PM ET as stated in the Overview
section. Additional instructions for abstract submission through the Broad Agency
Announcement Tool (BAAT) are contained within the Bundle of Attachments: Abstract
Instructions and Template.

 Full proposals are due October 10, 2024, at 1:00 PM ET as stated in the Overview section.
The Bundle of Attachments contain specific instructions and templates. Required
Attachments constitute a full proposal submission. Please visit Proposer Instructions and
General Terms and Conditions for specific information regarding submission methods
through the Broad Agency Announcement Tool (BAAT).

 Bundle of Attachments:

Use of the following templates is strongly encouraged for all proposal submissions to this
BAA. While the following templates are not mandatory (although strongly encouraged), a
full proposal submission must include the following required segments, as noted immediately
below.

o (strongly encouraged) Abstract Instructions and Template (MOCHA)
o (required) Proposal Summary Slide Template
o (required) Proposal Instructions and Volume I Template (Technical and Management)
o (required) Proposal Instructions and Volume II Template (Cost)
o (strongly encouraged) DARPA Standard Cost Proposal Spreadsheet
o (informational) Associate Contractor Agreement (ACA) (MOCHA)

https://www.darpa.mil/work-with-us/proposer-instructions
https://www.darpa.mil/work-with-us/proposer-instructions
https://www.darpa.mil/work-with-us/procurement-contracts
https://www.darpa.mil/work-with-us/grant-cooperative-agreements
https://www.darpa.mil/work-with-us/grant-cooperative-agreements
https://www.darpa.mil/work-with-us/other-transaction-agreements
https://www.darpa.mil/work-with-us/proposer-instructions
https://www.darpa.mil/work-with-us/proposer-instructions

Section IV: Special Considerations

 This announcement, the Bundle of Attachments, and websites incorporated by reference
constitute the entire solicitation. In the event of a discrepancy between the announcement,
attachments, or websites, the announcement shall take precedence.

 All responsible sources capable of satisfying the Government's needs, including both U.S.
and non-U.S. sources, may submit a proposal that shall be considered by DARPA.
Historically Black Colleges and Universities, Small Businesses, Small Disadvantaged
Businesses, and Minority Institutions are encouraged to submit proposals and join others in
submitting proposals; however, no portion of this announcement will be set aside for these
organizations’ participation due to the impracticality of reserving discrete or severable areas
of this research for exclusive competition among these entities. Non-U.S. organizations
and/or individuals may participate to the extent that such participants comply with any
necessary nondisclosure agreements, security regulations, export control laws, and other
governing statutes applicable under the circumstances.

 As of the time of publication of this solicitation, all proposal submissions are anticipated to
be unclassified.

 This MOCHA program is subject to an Associate Contractor Agreement (ACA). Because
the technical scope of the program is broad, DARPA encourages collaboration and
technology interchange between the performers and will require MOCHA performers to
negotiate and sign an ACA. See the Bundle of Attachments: Associate Contractor
Agreement for more information.

 Federally Funded Research and Development Centers (FFRDCs), University Affiliated
Research Centers, and Government entities interested in participating in the MOCHA
program or proposing to this announcement should first contact the Agency Point of Contact
(POC) listed in the Overview section prior to the Abstract due date to discuss eligibility.
Complete information regarding eligibility can be found at Proposer Instructions and General
Terms and Conditions.

 As of the date of publication of this solicitation, the Government expects that program goals
as described herein may be met by proposed efforts for fundamental research and non-
fundamental research. Some proposed research may present a high likelihood of disclosing
performance characteristics of military systems or manufacturing technologies that are
unique and critical to defense. Based on the anticipated type of proposer (e.g., university or
industry) and the nature of the solicited work, the Government expects that some awards will
include restrictions on the resultant research that will require the awardee to seek DARPA
permission before publishing any information or results relative to the program. For
additional information on fundamental research, please visit Proposer Instructions and
General Terms and Conditions.

Proposers should indicate in their proposal whether they believe the scope of the research
included in their proposal is fundamental or not. While proposers should clearly explain the

https://www.darpa.mil/work-with-us/proposer-instructions
https://www.darpa.mil/work-with-us/proposer-instructions
https://ddmdraft.darpa.mil/work-with-us/proposer-instructions
https://ddmdraft.darpa.mil/work-with-us/proposer-instructions

intended results of their research, the Government shall have sole discretion to determine
whether the proposed research shall be considered fundamental and to select the award
instrument type. Appropriate language will be included in resultant awards for non-
fundamental research to prescribe publication requirements and other restrictions, as
appropriate. This language can be found at Proposer Instructions and General Terms and
Conditions.

For certain research projects, it may be possible that although the research to be performed
by a potential awardee is non-fundamental research, its proposed sub awardee’s effort may
be fundamental research. It is also possible that the research performed by a potential
awardee is fundamental research while its proposed sub awardee’s effort may be non-
fundamental research. In all cases, it is the potential awardee’s responsibility to explain in its
proposal which proposed efforts are fundamental research and why the proposed efforts
should be considered fundamental research.

 DARPA’s Fundamental Research Risk-Based Security Review Process (FERBS) (formerly
CFIP) is an adaptive risk management security program designed to help protect the critical
technology and performer intellectual property associated with DARPA’s research projects
by identifying the possible vectors of undue foreign influence. The DARPA team will create
risk assessments of all proposed Senior/Key Personnel selected for negotiation of a
fundamental research cooperative agreement award. The DARPA risk assessment process
will be conducted separately from the DARPA scientific review process and adjudicated
prior to final award. For additional information on this process, please visit Proposer
Instructions: Grants/Cooperative Agreements.

Additional Resources:

 The APEX Accelerators program, formerly known as the Procurement Technical Assistance
Program (PTAP), focuses on building strong, sustainable, and resilient U.S. supply chains by
assisting a wide range of businesses that pursue and perform under contracts with the DoD,
other federal agencies, state and local governments, and with government prime contractors.
See https://www.apexaccelerators.us/ for more information.

APEX Accelerators helps businesses:

o Complete registration with a wide range of databases necessary for them to participate in
the government marketplace (e.g., SAM).

o Identify which agencies and offices may need their products or services and how to
connect with buying agencies and offices.

o Determine whether they are ready for government opportunities and how to position
themselves to succeed.

o Navigate solicitations and potential funding opportunities.
o Receive notifications of government contract opportunities on a regular basis.
o Network with buying officers, prime contractors, and other businesses.
o Resolve performance issues and prepare for audit, only if the service is needed, after

receiving an award.

https://ddmdraft.darpa.mil/work-with-us/proposer-instructions
https://ddmdraft.darpa.mil/work-with-us/proposer-instructions
https://www.darpa.mil/work-with-us/grant-cooperative-agreements
https://www.darpa.mil/work-with-us/grant-cooperative-agreements
https://www.apexaccelerators.us/

 DARPAConnect offers free resources to potential performers to help them navigate DARPA,
including “Understanding DARPA Award Vehicles and Solicitations,” “Making the Most of
Proposers Days,” and “Tips for DARPA Proposal Success.” Join DARPAConnect at
www.DARPAConnect.us to leverage on-demand learning and networking resources.

 Project Spectrum is a nonprofit effort funded by the DoD Office of Small Business Programs
to help educate the Defense Industrial Base (DIB) on compliance. Project Spectrum is
vendor-neutral and available to assist businesses with their cybersecurity and compliance
needs. Their mission is to improve cybersecurity readiness, resilience, and compliance for
small/medium-sized businesses and the federal manufacturing supply chain. Project
Spectrum events and programs will enhance awareness of cybersecurity threats within the
manufacturing, research and development, as well as knowledge-based services sectors of the
industrial base. Project Spectrum will leverage strategic partnerships within and outside of
the DoD to accelerate the overall cybersecurity compliance of the DIB.

www.Projectspectrum.io is a web portal that will provide resources, such as individualized
dashboards, a marketplace, and Pilot Program to help accelerate cybersecurity compliance.

 DARPA has streamlined our Broad Agency Announcements and is interested in your
feedback on this new format. Please send any comments to DARPAsolicitations@darpa.mil.

http://www.darpaconnect.us/
http://www.projectspectrum.io/
mailto:DARPAsolicitations@darpa.mil

References

1. Chen, T., Moreau, T., Jiang, Z., Yan, E., Cowan, M., Shen, H., . . . Krishnamurthy, A. (2018,
October 8). TVM: An automated end-to-end optimizing compiler for deep learning.
OSDI'18: Proceedings of the 13th USENIX conference on Operating Systems Design and
Implementation, 579-594.

2. Chen, Y., Mendis, C., Carbin, M., & Amarasinghe, S. (2021, April 17). VeGen: a vectorizer
generator for SIMD and beyond. Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, 902-914.
doi:10.1145/3445814.3446692

3. Ejjeh, A., Councilman, A., Kothari, A., Kotsifakou, M., Medvinsky, L., Noor, A. R., . . .
Adve, V. (2022). HPVM: Hardware-Agnostic Programming for Heterogeneous Parallel
Systems. IEEE Micro, 42(5), 108-117. doi:10.1109/MM.2022.3186547

4. Huang, B.-Y., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., & Malik, S. (2018,
December 21). Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-
Chip (SoC) Verification. (N. Chang, Ed.) ACM Transactions on Design Automation of
Electronic Systems (TODAES), 24(1), 1-24. doi:10.1145/3282444

5. Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., . . . Zinenko, O.
(2021, February 27). MLIR: Scaling compiler infrastructure for domain specific
computation. 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). doi:10.1109/CGO51591.2021.9370308

6. Mendis, C., Renda, A., Amarasinghe, S., & Carbin, M. (2019, June). Ithemal: Accurate,
portable and fast basic block throughput estimation using deep neural networks. (K.
Chaudhuri, & R. Salakhutdinov, Eds.) Proceedings of the 36th International Conference on
Machine Learning, 97, 4505-4515. doi:10.48550/arXiv.1808.07412

7. Mendis, C., Yang, C., Pu, Y., Amarasinghe, S., & Carbin, M. (2019, December 8). Compiler
auto-vectorization with imitation learning. Proceedings of the 33rd International Conference
on Neural Information Processing Systems, 14625-14635. doi:10.5555/3454287.3455597

8. Tate, R., Stepp, M., Tatlock, Z., & Lerner, S. (2009, January 21). Equality saturation: a new
approach to optimization. Proceedings of the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 264-276. doi:10.1145/1480881.148091

9. Trofin, M., Qian, Y., Brevdo, E., Lin, Z., Choromanski, K., & Li, D. (2021, January 13).
MLGO: a Machine Learning Guided Compiler Optimizations Framework. arXiv preprint, 12.
doi:10.48550/arXiv.2101.04808

10. Willsey, M., Nandi, C., Wang, Y. R., Flatt, O., Tatlock, Z., & Panchekha, P. (2021, January
4). egg: Fast and extensible equality saturation. Proceedings of the ACM on Programming
Languages, 5(POPL), 1-29. doi:10.1145/3434304

11. Cummins, C., Seeker, V., Grubisic, D., Liang, Y., Elhoushi, M., Roziere, B., . . . Leather, H.
(2023). Large Language Models for Compiler Optimization. doi:10.48550/arXiv.2309.07062

12. Cummins, C., Seeker, V., Grubisic, D., Rozière, B., Gehring, J., Synnaeve, G., & Leather, H.
(2024). Meta Large Language Model Compiler: Foundation Models of Compiler
Optimization.

