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Machine learning and Optimization-guided Compilers for Heterogeneous 
Architectures (MOCHA)

Compilers can be rearchitected to generate highly efficient code 
for heterogeneous hardware platforms by employing ML-generated 
components that can be incorporated with minimal human effort

IR: Intermediate Representation
CPU: Central Processing Unit
GPU: Graphical Processing Unit
TPU: Tensor Processing Unit
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Today’s compiler architecture MOCHA

Apply ML across the entire compiler pipeline
• Support multiple compute architectures simultaneously
• Enable holistic optimization across passes

Hardware-agnostic

Hardware-aware

Hardware-specific

Many Middles

Back-ends 

Mapper

IRn-2

X86 ARM GPU TPU

IR1

Mapper

IR2 IRnIRn-1

Acceleratori Acceleratori+1

High-level Hardware Agnostic LanguageC C++ ADA Java Python

IR Optimizations

X86 ARM PowerPC

Front-end

Middle:

Back-end 

…
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The tale of the F-22 “Software Crisis”

1985
 F-22 development begins

1997
 F-22 first flight

1987 
ADA Mandate

2005 
F-22 enters military service

1990 
i960 development 
halted. Intel charged 
thousands of dollars for 
each i960 MX and each 
F-22 contained a cluster 
of 35 i960MX processors

Shutterstock

Switch to PowerPC
and then 386

Major software 
rewrites due to 
processor switch
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March 25, 1998 
“The Air Force is concerned that the 
writing and testing of avionics software 
may not be progressing sufficiently to 
provide software deliveries on schedule.”
F-22 AIRCRAFT: Progress of the Engineering and 
Manufacturing Development Program 
Statement of Louis J. Rodrigues, Director, Defense
Acquisition Issues, National Security and 
International Affairs Division

“As of 2003, after over a decade of effort, the code was crashing, on average, every three hours. 
Some parts of the software system were failing every 90 minutes.”

1991

Defense Acquisition Board Report, 
June 1991

“The 1.55 million SLOC
to be built for the F-22 
represents the most 
significant threat to the 
successful development 
of the aircraft.”

SLOC: Source Lines Of Code https://freerepublic.com/focus/f-news/1110502/posts
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F-22 common integrated 
processor based on i960MX

© John R Newport

1988 
Intel announces i960.

Pitched as ADA Processor

© Antoine Bercovici



• DoD system design, development and deployments happen over very long timeframes

• Processors come and go much more quickly
• Even new versions of existing components may have wildly different micro-architecture with different 

performance profiles

• Mission needs change much more quickly

• Writing software “close to the metal” to gain performance impedes agility and adaptability

• Mission software should be “hardware agnostic” and written at a high level of abstraction

• The compiler should decide how to utilize different processors and accelerators, enabling the 
software to be remapped to take advantage of new hardware

• Increases agility
• Requires much less (scarce) human resources
• Increases software reliability and correctness

The lesson of F-22 software
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Today: State-of-the-art architectures include heterogeneity

End of Moore’s Law has led to proliferation of processing units and created 
a need for specialized computer architectures and accelerators

Open Multimedia Applications Platform system on chip: TI OMAP4 SoC 
• More computational power on accelerators than on CPU cores
• Specialization overcomes power limitations
• Programming heterogenous systems is difficult

CPU Accelerators
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Today: Heterogeneous hardware overcomes challenging SWaP constraints

Transmuter v.5 SoC
(DARPA MTO SDH Program UMich Team)

With Compiler Support, Heterogeneous and Specialized SoC Outperforms CPU’s and GPU’s 

Manual development of compiler tool chain required

6

SoC: System on Chip
SDH: Software-Defined Hardware
SWaP: Size, Weight, and Power

Pal, Subhankar, et al. "Transmuter: Bridging the efficiency gap using memory and 
dataflow reconfiguration." Proceedings of the ACM International Conference on 
Parallel Architectures and Compilation Techniques. 2020.
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TM Shared at 
1.0 GHz

7.93

TM Shared at 
0.2 GHz

19.54

TM Reconfig. 
at 1.0 GHz

15.55

TM Reconfig. 
at 0.2 GHz

41.80

23.9x 3.3x

CPU

1.75

GPU

12.56
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Today: Compiler development is dependent on manual effort

Million lines of code

• Unresponsive to hardware innovations
• Abstraction of the standard CPU architecture
• Based on classic Intermediate Representations (IR), analyses, and 

transformations; ad hoc heuristics; and hand-tuned optimizations 
• Manufactures spec-sheets are inaccurate due to micro-

architectural interactions
• Don’t match the capabilities of accelerators 
• Optimization design is a “black art”

C C++ ADA Java Python

IR Optimizations

X86 ARM GPUPowerPC TPU SDH

Front-end
Programming language specific parsers and 

analyses

Middle:
One size fits all intermediate representation 

and optimizations

Back-end 
Hardware specific code generator

The Classic “Hourglass” Architecture
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Source: Arseny Kapoulkine https://zeux.io/2022/01/08/on-proebstings-law/
Source: Chris Cummins, Deep Learning for Compilers 2019
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Challenge: Compiling for heterogeneous ensembles with limited human effort

CPU: Central Processing Unit
DSP: Digital Signal Processor

GPU: Graphical Processing Unit
TPU: Tensor Processing Unit

Signal
Processing

DSP

Security

Crypto Processor

Object 
Detection

Transmuter

Object
Classification

TPU
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Tomorrow: Machine learning can break the manual bottlenecks 

Technical hypothesis: Compilers can be rearchitected to generate highly efficient code for heterogeneous 
hardware platforms by using ML-generated components that can be incorporated with minimal human effort

High-Level Hardware-Agnostic Language 
Raise the level of abstraction, reduce programming effort

Middle
Create many different IRs at different 
abstraction levels each with its own 

optimization suite

Back-ends 
Hardware-specific code generators

Mapper
Partition the code into segments that are best 

handled by specific IRs and specific hardware targets

IRn-2

X86 ARM GPU TPU

IR1

Mapper

IR2 IRnIRn-1

Acceleratori Acceleratori+1

Approach: 
• Move to “Hardware Agnostic” programming
• Reduce human effort in compiler construction by using Machine Learning to generate compiler components
• Target a variety of accelerators, producing correct, highly optimized code for a heterogenous ensemble of components

IR

Replace the “Hourglass”
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CPU: Central Processing Unit
GPU: Graphics Processing Unit
TPU: Tensor Processing Unit
IR: Intermediate Representation

Apply Machine Learning Throughout
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Reason for confidence:
AccelSeeker: Identifying acceleration candidates

Zacharopoulos, Georgios, et al. "Compiler-assisted selection of hardware acceleration 
candidates from application source code." 2019 IEEE 37th International Conference on 
Computer Design (ICCD). IEEE, 2019.

• Front-end components need to identify regions of the code that can be targeted to accelerators
• Candidate regions identified by examining the call graph, which is constructed in the compiler front end
• Performance models identify which sub-graphs are candidates for acceleration

Limitations:
Performance models are ad hoc and not general

CFG: Control-flow graph
DFG: Data-flow graph
LUT: Logical Unit
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Target-specific Vectorizer

Architecture Manual

Vector Program

Scalar Program

VeGen = Vectorizer Generator
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Reason for confidence:
VeGen: Learning what optimization to apply

Chen, Yishen, et al. "VeGen: a vectorizer generator for SIMD and beyond."
Proceedings of the 26th ACM International Conference on Architectural 
Support for Programming Languages and Operating Systems. 2021.
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A matrix-vector multiplication kernel from TVM

vmovdqa xmm0, .LC0[rip]
vmovdqu xmm1, [rsi]
vmovdqu xmm3, [rsi+16]
vmovdqu xmm2, [rsi+32]
vmovdqu xmm6, [rsi+48]
vpand xmm10, xmm0, xmm1
vpsrlw xmm1, xmm1, 8
movzx r9d, [rdi]
vpand xmm4, xmm0, xmm3
vpsrlw xmm3, xmm3, 8
movzx ecx, [rdi+2]
movzx eax, [rdi+3]
vpackuswb xmm4, xmm10, xmm4
vpackuswb xmm1, xmm1, xmm3
vpand xmm10, xmm0, xmm2
movzx r8d, [rdi+1]
vpand xmm3, xmm0, xmm6
vpsrlw xmm2, xmm2, 8
vmovd xmm8, r9d
vpackuswb xmm3, xmm10, xmm3
vpsrlw xmm6, xmm6, 8
vpand xmm10, xmm0, xmm4
vpackuswb xmm2, xmm2, xmm6
vpsrlw xmm4, xmm4, 8
vpand xmm6, xmm0, xmm3
vpsrlw xmm3, xmm3, 8
vpackuswb xmm10, xmm10, xmm6
vpbroadcastw xmm8, xmm8
vpackuswb xmm6, xmm4, xmm3
vpand xmm3, xmm0, xmm1
vpand xmm0, xmm0, xmm2
vpackuswb xmm3, xmm3, xmm0
vpsrldq xmm0, xmm10, 8
vpmovsxbw xmm4, xmm10
vmovd xmm7, r8d
vpmullw xmm4, xmm4, xmm8
vpmovsxbw xmm0, xmm0
vpmullw xmm0, xmm0, xmm8
vpsrlw xmm2, xmm2, 8
vpbroadcastw xmm7, xmm7
vpmovsxbw xmm8, xmm3

  

movzx r11d, [rdi]
movsx eax, [rsi]
imul r11d, eax
movsx ecx, [1+rsi]
movzx r8d, [1+rdi]
imul r8d, ecx
movzx r10d, [2+rdi]
movsx r9d, [2+rsi]
imul r10d, r9d
movsx eax, [3+rsi]
movzx ecx, [3+rdi]
imul ecx, eax
add r11d, [rdx]
add r11d, r8d
add r11d, r10d
add r11d, ecx
mov [rdx], r11d
movzx r9d, [rdi]
movsx r11d, [4+rsi]
imul r9d, r11d
movsx eax, [5+rsi]
movzx r8d, [1+rdi]
imul r8d, eax
movzx eax, [2+rdi]
movsx ecx, [6+rsi]
imul eax, ecx
movsx r10d, [7+rsi]
movzx r11d, [3+rdi]
imul r11d, r10d
add r9d, [4+rdx]
add r9d, r8d
add r9d, eax
add r9d, r11d
mov [4+rdx], r9d
movzx r8d, [rdi]
movsx r9d, [8+rsi]
imul r8d, r9d
movsx eax, [9+rsi]
movzx ecx, [1+rdi]
imul ecx, eax
movzx r10d, [2+rdi]

 

movzx eax, [rdi + 3]
vpbroadcastd zmm8, eax
movzx eax, [rdi + 2]
vpbroadcastd zmm9, eax
movzx eax, [rdi + 1]
vpbroadcastd zmm10, eax
movzx eax, [rdi]
vpbroadcastd zmm11, eax
vmovdqu xmm0, [rsi]
vmovdqu xmm1, [rsi + 16]
vmovdqu xmm6, [rsi + 32]
vmovdqu xmm7, [rsi + 48]
vmovdqa xmm2, [rip + .LCPI0_0]
vpshufb xmm3, xmm7, xmm2
vpshufb xmm2, xmm6, xmm2
vpunpckldq xmm2, xmm2, xmm3
vmovdqa xmm3, [rip + .LCPI0_1]
vpshufb xmm4, xmm1, xmm3
vpshufb xmm3, xmm0, xmm3
vpunpckldq xmm3, xmm3, xmm4
vpblendd xmm12, xmm3, xmm2, 12
vmovdqa xmm3, [rip + .LCPI0_2]
vpshufb xmm4, xmm7, xmm3
vpshufb xmm3, xmm6, xmm3
vpunpckldq xmm3, xmm3, xmm4
vmovdqa xmm4, [rip + .LCPI0_3]
vpshufb xmm5, xmm1, xmm4
vpshufb xmm4, xmm0, xmm4
vpunpckldq xmm4, xmm4, xmm5
vpblendd xmm3, xmm4, xmm3, 12
vmovdqa xmm4, [rip + .LCPI0_4]
vpshufb xmm5, xmm7, xmm4
vpshufb xmm4, xmm6, xmm4
vpunpckldq xmm4, xmm4, xmm5
vmovdqa xmm5, [rip + .LCPI0_5]
vpshufb xmm2, xmm1, xmm5
vpshufb xmm5, xmm0, xmm5
vpunpckldq xmm2, xmm5, xmm2
vpblendd xmm2, xmm2, xmm4, 12
vmovdqa xmm4, [rip + .LCPI0_6]
vpshufb xmm5, xmm7, xmm4

  

vmovdqu64 zmm0, [rdx]
vpbroadcastd zmm1, [rdi]
vpdpbusd zmm0, zmm0, [rsi]
vmovdqu64 [rdx], zmm0

void
dot_16x1x16_uint8_int8_int32(
uint8_t data[restrict 4],
int8_t kernel[restrict 16][4],
int32_t output[restrict 16]) {
for (int i = 0; i < 16; i++)
for (int k = 0; k < 4; k++)

output[i] +=
data[k] * kernel[i][k];

}
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Limitations:
Only one type of 
optimization

VeGen: ML generated code is more compact and efficient

ICC: Intel C Compiler
GCC: Gnu C Compiler
Clang: LLVM compiler front-end
TVM: Tensor Virtual Machine
VeGen: Vectorizer Generator

ICC (1x) GCC (1.5x) Clang/LLVM (2.2x) VeGen (11x)
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Faster and easier to produce 
than models developed by 
hand.

Code Sequences

ML Model

Training Time

Measurements

Model Prediction 
44 cycles

More accurate performance 
model and therefore better 
code.

Code from 
Middle End

Code 
Generator

Labeled Data Set

Trained Model
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Reason for confidence:
Ithemal: Automatic construction of accurate processor performance models

Execution Time

Ithemal (Instruction THroughput Estimator using MAchine Learning)
Mendis et al. [ICML’19]

DISTRIBUTION STATEMENT A: Approved for public release: distribution is unlimited.
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Ithemal: ML used in back-end development improves code performance

Renda, A., Chen, Y., Mendis, C., & Carbin, M. (2020, October). Difftune: Optimizing cpu simulator parameters with learned differentiable 
surrogates. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (pp. 442-455). IEEE.

Accuracy of Performance Model Throughput of Compiled Code

Smaller is better

Bigger is better

14

Limitations:
• Only one architecture
• Only one figure of merit

Method Throughput (Instructions / second)
llvm-mca 492

IACA 541

Ithemal 560

Empirical execution 13

Architecture Predictor Error
Ivy Bridge Default

DiffTune
Ithemal

IACA
OpenTuner

33.5%
25.4% ± 0.5%

9.4%
15.7%
102.0%

Haswell Default
DiffTune
Ithemal

IACA
OpenTuner

25.0%
23.7% ± 1.5%

9.2%
17.1%
105.4%

Skylake Default
DiffTune
Ithemal

IACA
OpenTuner

26.7%
23.0% ± 1.4%

9.3%
14.3%
113.0%
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1. ML-based Generators: Multiple teams produce ML-based generators for different parts of compiler 
framework and one or two teams create a full ML-optimized tool chain
1. Mapping
2. Choosing and sequencing optimizations
3. Performance Modeling appropriate for front end, middle, and back end
4. Validation
5. Code generation
6. Integrated solutions: end-to-end compiler toolchains generated by the performer’s and others’ generators

2. Evaluation: Government team creates a series of challenge problems of increasing complexity and 
measures component and system performance
1. Using an ensemble of available hardware components and conventional languages
2. Using models of emerging platforms 
3. Using hardware-agnostic languages

3. Consortium Development: creates an institutional framework to incentivize industry adoption and 
sustainment of the technology

Program Structure

15

Parts

Full
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Program Timeline

• “Learning back-end performance models” (Back-End) doesn’t rely on results in other areas and will provide capabilities for current systems (CPU’s GPU’s) in 
year 1 and will extend to other types of components in years 2 & 3

• “Learning to apply IR-based optimizations” (Middle) relies on back-end performance models and will provide capabilities in year 2 with extensions in year 3
• “Learning to allocate code segments to hardware components” (Front-End) depends on performance models from Middle.  Final results in Year 3
• “End-to-end optimization” depends on all other technologies.  Experimentation will proceed throughout with synthetic data.  Final results in Year 3

2025 2028
1.Learning back-end performance models

  CPU computation
  Power consumption

  GPUS
  Accelerator (AI, ASIC, ...)

2.Learning to apply IR-based optimizations
  Conventional CPU’s

  Vectorizing CPU’s
  GPU’s

  Application-specific hardware
3.Learning to allocate code segments to 

hardware components
  Using source annotations

  Modeling data motion
  Developing hardware agnostic languages

  Recognizing patterns in code
4. End-to-end optimization

  Learning to generate training corpora
  End-to-end optimization frameworks

5. Evaluation

2026 2027
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

1 2 3

Color Code
Some prior art
Minimal prior art
Very Limited prior art
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1. Government evaluation support team creates a “test suite” of system software and test criteria (e.g., 
speed, power, code size)

2. Technical teams generate components for Front-end, Middle, and Back-end and integrate these into 
end-to-end solutions

3. Evaluation support team runs the full spectrum systems and measures performance and lines of 
compiler instructions needed to configure the full spectrum systems.

Experimental design

Front-end 
components

IR & 
Optimization

Back-end 
components

Test 
Suite

Full
Spectrum

Measurements:
• Human-written lines of compiler code needed
• Performance on test criteria
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IR: Intermediate Representation

End-to-end 
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Notional Final Challenge Configuration

GPU
High 
End 
CPU

64-bit
Super Scalar

Vector Instructions

Low 
Power
CPU

32-bt
Integer

Analog
AI

From 
ScaNN

DSP

Digital 
Signal 

Processor

Renderer Audio

AI

TPU

Reconfig
urable

From
SDH

…

• The Year 3 challenge platforms will include an ensemble including 6 or more types 
of computational elements (and potentially more than 1 from each category)

• A variety of different configurations will be used as challenge platforms
• A variety of different programs will be compiled for these platforms

These components are non-
programmable accelerators
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3 cycles of evaluation 
• A mini test at 6-month boundaries (1.1, 2.1, 3.1)
• A full test at yearly boundaries (1.2, 2.2, 3.2)

Year 1 focuses on increasing the number of available accelerators
Year 2 add increasing complexity of the figure of merit (i.e., # of criteria – speed, power, code size)
Year 3 emphasizes the degree of hardware independence and application code size

Experimental design – Evolution of tests

19

MOCHA: ML and Optimization 
guided compilers that require 

minimal human effort to 
generate efficient code for 
heterogeneous hardware 

platforms

Year 3 Challenge problems include:
• Hardware agnostic languages
• All of the below

Year 2 Challenge problems include:
• Simulation models (or real systems) of emerging 

components in addition to those below

Year 1 Challenge problems include:
• Conventional programming languages
• Heterogeneous ensemble of existing hardware targets (CPUs, GPUs, …)

Experimental Conditions
as % of Final Goal Conditions

Eval 
#

# 
Component 

Types
Total # 

Components

Criteria in 
Figure of 

Merit
Hardware 
Agnostic

Source
Code 
Size

1.1 2 2 1 75% 10,000
1.2 2 4 1 75% 25,000
2.1 3 6 2 75% 50,000
2.2 4 8 2 80% 100,000
3.1 5 10 3 85% 500,000

3.2 6 12 3 90% 1,000,000
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1. Human effort reduction: 
• Time to create new compiler components
• Measured by reduction in hand-written lines of compiler instructions

2. Code Quality multi-dimensional performance gain on benchmarks vs. baseline without ML guidance
• Execution speed
• Power consumption
• Memory footprint

Metrics

Metric Year 1 Year 2 Year 3
Human Effort 
Reduction 50% 75% 90%

Code quality 
performance gain 1x 2.5x 5x
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