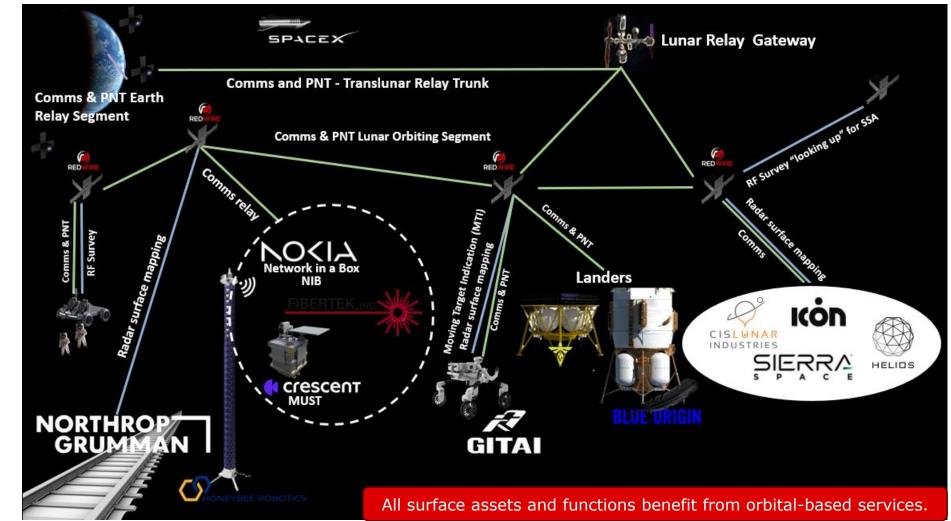


10-Year Lunar Architecture (LunA-10) Capability Study A Multi-Service Cislunar Commercial Constellation

Presented at LSIC

April 23-25th, 2024


Distribution Statement A. Approved for public release: distribution is unlimited.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

Redwire LunA-10 Introduction

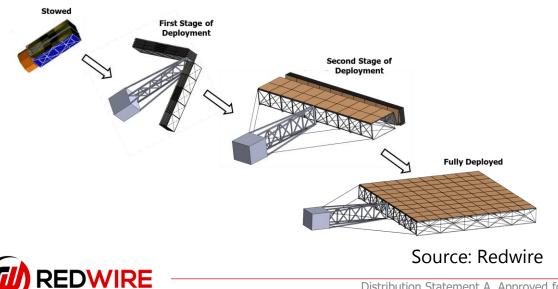
Redwire proposes a constellation of cislunar orbiters providing multiple RF-based services:

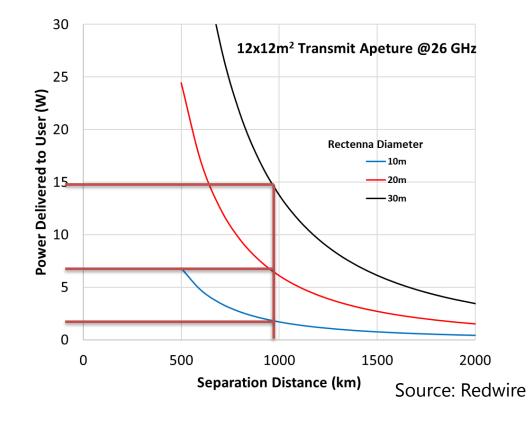
- Communications
- Position, Navigation, and Timing (PNT)
- RF Survey
- SAR/MTI
- Microwave space-based solar power beaming

Source: Redwire

2

BUILD ABOVE


Distribution Statement A. Approved for public release: distribution is unlimited.


This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

Microwave Power Beaming is Feasible, but not Commercially Viable...

Conclusion: While technically feasible, microwave power beaming from cislunar orbit does not appear to be commercially viable due to aperture size/mass/cost that would be required for meaningful energy delivery

Formation of 12m x 12m aperture

Tx antenna >19mx19m could realize a useful amount of power (>500 Whr) with the standard efficiencies @26 GHz and a 30m diameter rectenna

BUILD ABOVE

3

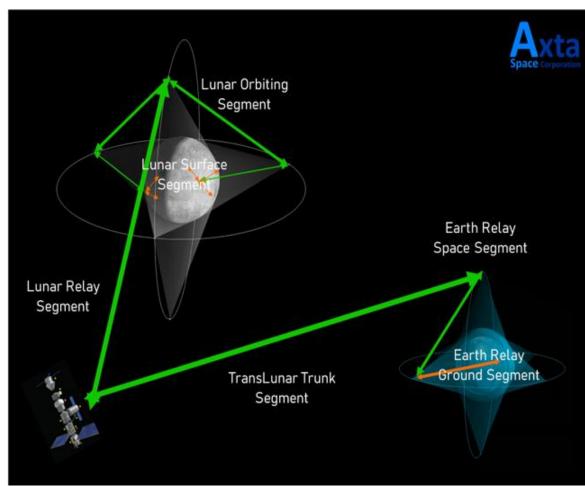
Distribution Statement A. Approved for public release: distribution is unlimited.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

Full End-to-End Communications and PNT Solution Devised

Summary of Proposed Lunar Comms Architecture

Lunar Surface Segment: NTE/5G RF last mile


- Nokia proposed LTE/4G/5G supported solution, 10km, 100mbps
 Lunar Orbiting Segment: mid/high lunar
- Constellation 16 sats, ubiquitous coverage, leveraging sustainable frozen lunar orbits, optimized for comms capability, 3000-13000km, **1-10 Gbps**
- PNT hosted on same constellation

Lunar Relay Segment: NRHO

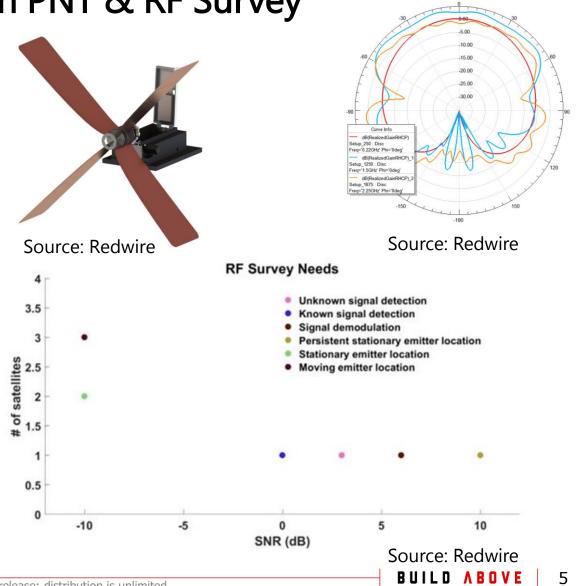
• Lunar orbiters to NRHO, 3000-70000km, 1-10Gbps

Translunar Trunk Segment: Earth orbiting, high-rate data

- Long link distance, 390,721km, optical data link, **100Gbps** <u>Earth Relay Space Segment:</u> Earth orbiting (prior to atmospherics)
- Constellation, 3 GEO sats, constant link, 40000km, 100Gbps
- Earth Relay Ground Segment: Earth-Ground, traditional RF links
- Gateway into Cloud distribution to any site, optical terrestrial, 1-10Gbps

Source: Redwire

BUILD ABO


Distribution Statement A. Approved for public release: distribution is unlimited.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

Same Aperture Can Be Used for Both PNT & RF Survey

- An ultra-wideband "Vivaldi" antenna can be used for both PNT and RF survey functions
- For RF Survey mode, system can either "look down" to detect RF sources on the lunar surface, or "look up" at orbiting objects for Space Situational Awareness (SSA)
- Signal strength that can be identified for a given separation distance has been assessed
- System could be used to cue the pointing of a high-gain, narrow beam antenna for signal localization and characterization.

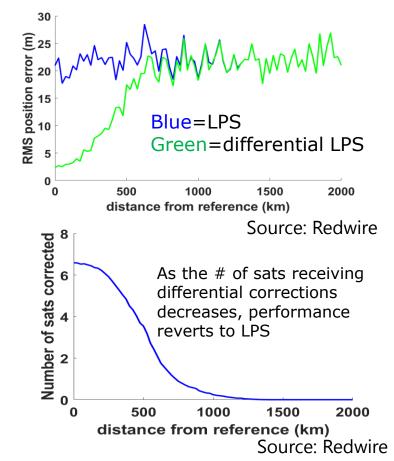
EDWIRE

Distribution Statement A. Approved for public release: distribution is unlimited. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

PNT Performance

Predicted Position and Timing Performance for LPS

Clock Technology	Allan Deviation @65000 sec (Hz/Hz)	σ_{pos} (m)	σ _{time} (ns)
Rb-lamp	5×10^{-14}	20.9	30.2
Cesium beam	1.5×10^{-13}	21.5	31.0
DSAC	2×10^{-15}	20.9	30.1


User 3D RMS position errors are expected to

RMS timing error expected to be about 30 ns

Both position and timing error are limited by

Navigation performance can be improved by employing a differential LPS system (DLPS)

- This system uses a fixed lunar reference station to compute pseudorange corrections for each satellite
- The corrections are then uplinked to the satellites and broadcast as part of the LPS messages

Conclusions

- User 3D RMS position errors are expected to be about 2.2 *meters* near the reference station
- This best-case error is limited by the random pseudorange error, not the ephemeris error
- Increasing the satellite power to 100W from 1W would decrease the best-case error by a factor of 10 to 0.22 meters.

be about 21 meters

ephemeris position error

Conclusions

Distribution Statement A. Approved for public release: distribution is unlimited

BUILD ABOVE 6

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Source: Redwire

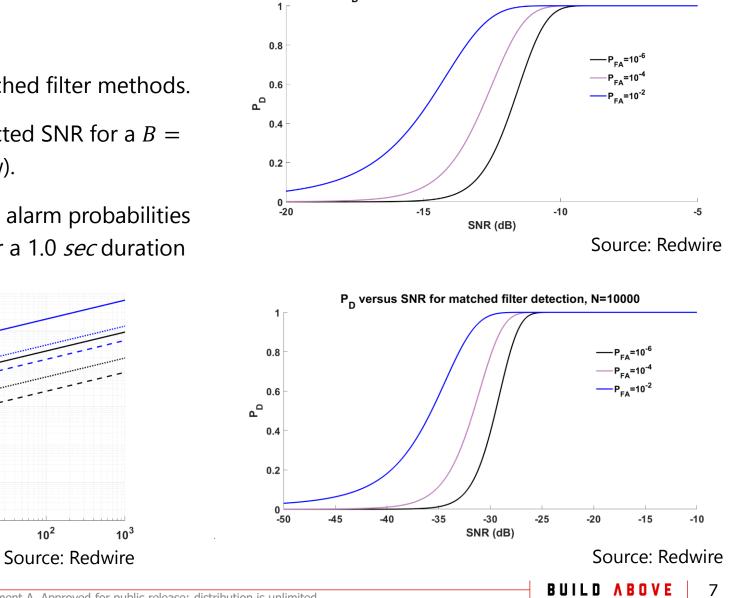
RF Survey Performance

-0.22 GHz, power level

1.5 GHz, power level
 2.25 GHz, power level
 0.22 GHz, matched filte

- - 2.25 GHz, matched filter

 10^{-2}


10⁻¹

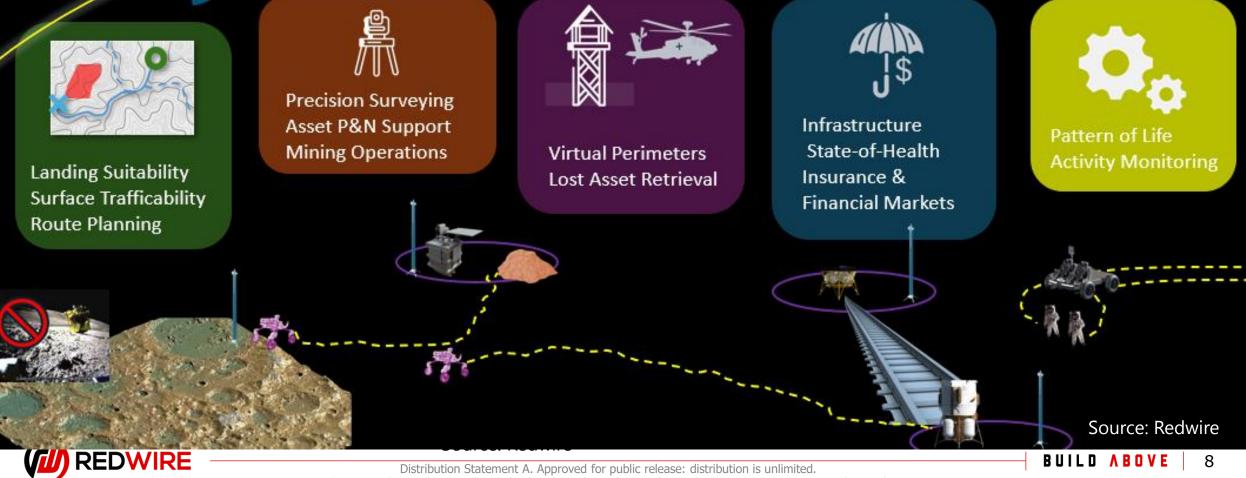
10⁰

Power (W)

10¹

- RF signals can be detected via energy or matched filter methods.
- For three frequencies we computed the expected SNR for a B = 10kHz, P = 1W signal versus distance (below).
- The probability of detection for different false alarm probabilities P_{FA} for each method is shown on the right for a 1.0 sec duration segment.

P_D versus SNR for signal energy detection, N=10000


Maximum detection distance (km) 01, 01 99

10⁻³

Distribution Statement A. Approved for public release: distribution is unlimited.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

Orbital Radar is the Swiss Army Knife in the Raw Frontier of Lunar Surface O&M

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

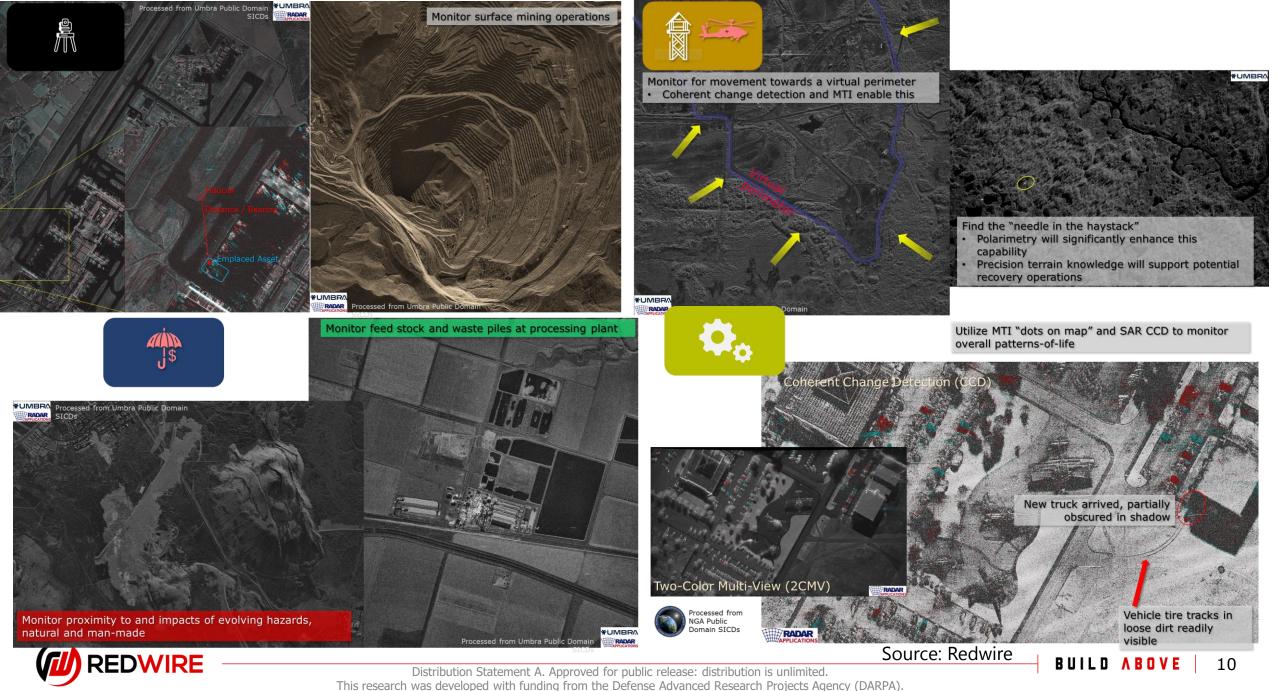
At every scale the lunar surface is very rough, fractal in nature Precision knowledge at a broad & fine level of detail will be required to enable:

- Near-term landing and site staging (even "small" rocks are problematic!)
- Efficient routing / trafficability for surface rovers ("Google Maps for Moon")
- Where to emplace pads, route rails, LoS Comms and roadways for longer term economy

Source: Redwire

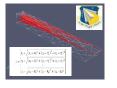
Prospecting and forensics

Orbital Radar imaging can provide lunar terrain detail at the scale of 0.3m or finer


Best available DEM of Lunar South Pole is only <u>30m</u> post spacing

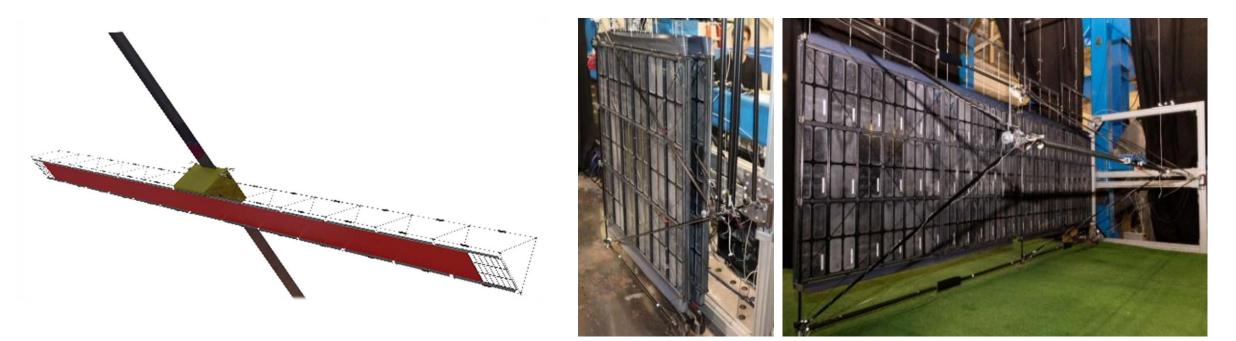
Distribution Statement A. Approved for public release: distribution is unlimited.

BUILD ABOVE 9


This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

Redwire's Deployable Planar Phased Array Architectures

Planar array architectures supporting SAR/MTI have been ground demonstrated.



Instantaneous metrology enabling active phase correction

On-orbit thermal and structural stability

Source: Redwire

Distribution Statement A. Approved for public release: distribution is unlimited.

BUILD ABOVE 11

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

Commercialization/Economic Outlook and Mission Timeline

No.

. /

- Deploying a commercially-viable cislunar service presents several economic challenges, primarily driven by the high initial investment required and the need to secure financing where market potential and ROI are uncertain/undemonstrated.
- Pricing is being developed with following assumptions: <5-yr ROI, inclusive of hardware NRE/RE, launch costs, financing and insurance fees, and yearly operational costs.

Se	rvice		Consid	lered Inder Infrast	Pr	Pricing Strategy					
Communicatio	ns	1	Infrastructure					yearly subscription			
PNT			Infrastructure					yearly subscription			
RF Survey			Independent Service					per RF survey			
SAR and MTI	ATI Independent Service per km ² scanned					I					
	Source: Redwin										
2025 2026	2027	2028	2029	2030	2031	2032	2033	2034	203		

Year/Task	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Age	Explora	ition Age	e Foundational Ag			ge		Industi	ial Age		Jet Age
	TRL 4		Pathfinder Minimum Viable Experiment (MVE)			Minimum Viable Product (MVP) Constellation - South Pole Services			Constellation Expansion		
Redwire Mission Phasing	Focus is on further analysis, developm detailed design, an demonstration (gro of hardware and software. This is supported by proto of SAR sub arrays (the full SAR apertu PNT/RF Survey ape and data processin hardware and algorithms.	nent, nd ound) otyping (tiles), ure, the erture,	produced, an orbit to dem capabilities a services. Wi be limited, p However, da demonstrate performance	nfinder is designe nd deployed to cis ionstrate SAR/MT as well as PNT/RF ith one spacecraft particularly for PN ita produced will e full functionality e, and ultimately constellation-base	slunar T survey t, data will T. y and validate	additional a constellation adequate sp coverage/re PNT/RF surv Subscription to governme	der is augmente ssets to form a n capable of pro atial and temp solution for SA rey to South Pol n services will b ent and comme t South Pole loo	oviding oral R/MTI and le locations. e available rical	Assets are add to other Lunar Subscription se include increas	locations (ervices are	e.g., far side). expanded to

Source: Redwire

BUILD

Distribution Statement A. Approved for public release: distribution is unlimited.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

THANK YOU!

Contact: Dana Turse, Space Systems Architect

Dana.turse@redwirespace.com, (303)908-7649

Distribution Statement A. Approved for public release: distribution is unlimited.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).