2024

S I E R R A C E

Lunar Oxygen Production and Energy Storage Node

This work was conducted under the DARPA 10-Year Lunar Architecture Capability Study (LunA-10) under contract HR0011-24-3-0310

© 2024 SIERRA SPACE CORPORATION

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited

Lunar Oxygen Production and Energy Storage Node

- Three Main Functions
 - Oxygen Extraction from Regolith
 - Direct Solar Power Input
 - Fuel Cell Energy Storage
 - Lunar Night Survival
 - Chemical Conversion
 - Waste Stream Recycling
 - Energy Efficient Long-Term Propellant Storage

Artist concept of a carbothermal oxygen production plant

<u>چالحجر ہ</u>

© 2024 SIERRA SPACE CORPORATION // 2

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited

Carbothermal Oxygen Production Process

$MO_x(l) + xCH_4(g$	$M(l) \to M(l) + xCC$	$\mathcal{D}(g) + 2xH_2(g)$	Carbothermal & Pyrolysis	
$xCO(g) + 3xH_2(g)$	$g) \to xH_2O(g) +$	$+xCH_4(g)$	Methanation	
$xH_2O(l) \rightarrow xH_2(l)$	$g) + 0.5xO_2(g)$		Water Electrolysis	Carbothermal reduction uses methane and heat to extract oxygen
$MO_x(l) \rightarrow M(l) +$	$-0.5xO_2(g)$		Net Reaction	from the metallic oxides within lunar regolith to produce CO/CO_2
. <sup m		Carbothermal Value Streams		 The oxygen is stored, the hydrogen is recycled back into the system
ん と と よ 。 Prove	Dxygen oduction	Electrical Energy Storage	Chemical Recycling	
Source: Sierra	I Space			

© 2024 SIERRA SPACE CORPORATION // 3

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited

Lunar Oxygen Production

- Sierra Space's carbothermal oxygen production process (TRL 6) extracts oxygen from lunar regolith.
 - Could operate anywhere on the moon
- Produces reduced metallic slag which could be refined into pure metals or used as construction material
- Uses direct solar heating to significantly reduce electricity usage
 - Could substitute electrical energy

© 2024 SIERRA SPACE CORPORATION

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited

Fuel Cell Energy Storage

- Electrolysis is used to store energy during the lunar day and a fuel cell provides electricity during lunar night
- Uses electricity to split water into hydrogen and oxygen during the day
 - Oxygen is extracted from lunar regolith to reduce launch mass
- The fuel cell reacts the hydrogen and oxygen to produce electricity during lunar night

<u>ۣ</u>

© 2024 SIERRA SPACE CORPORATION // 5

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited

Chemical Conversion

- Could recycle and reuse chemicals
 - Convert chemicals for storage or transport
 - Reduce resupply requirements
- Examples:
 - Propellant waste (ullage, boil-off)
 - Fuel cell waste (water) •
 - ECLSS waste (carbon dioxide, biological)

<u></u>

 $Methane \Leftrightarrow Carbon + Hydrogen$

 $Water \Leftrightarrow Hydrogen + Oxygen$

© 2024 SIERRA SPACE CORPORATION

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited

Value Stream Inputs and Outputs

<!

SIERR

Oxygen Production		Energy	Storge	Chemical Recycling				
Inputs	Outputs	Inputs	Outputs	Inputs	Outputs			
 Lunar Regolith Electricity (day) Communications Carbon Propulsion ullage ECLSS Waste Hydrogen Propulsion ullage 	 Oxygen Propulsion ECLSS Slag Construction feedstock Metals refinement 	 Electricity (day) Communications 	 Electricity (Night) Night survival Night ops 	 Water Fuel cell rovers Hydrogen Propulsion ullage Oxygen Propulsion ullage Methane Propulsion ullage ECLSS waste Carbon Dioxide ECLSS waste 	 Water ECLSS Fell cell rovers Cold Gas propellant Long term storage Hydrogen Fuel cell rovers Propellant Oxygen Propellant ECLSS Methane Propellant Carbon ISRU Steel Carbon Dioxide Coolant (Scaling phase only) 			

© 2024 SIERRA SPACE CORPORATION // 7

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited

Carbothermal Development

<u>چالحج ہ</u>

Source: Sierra Space 1993 Hot-wall furnace experiments

Direct energy processing approach developed to allow long duration reactor operation

Scaling Design & Testing

The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government

Large scale fully automated reactor demonstration

Source: Sierra Space 2021-2024 Flight forward, automated reactor demonstrator development

Source: https://www.fox13seattle.com/news/nasa-extracts-oxygen-from-lunar-soilsimulant-for-the-first-time

Thermal vacuum test to TRL 6

© 2024 SIERRA SPACE CORPORATION // 8

End-to-end carbothermal field test with solar energy, Sabatier reactor, electrolysis & thruster

Carbothermal Reactor Strategy

© 2024 SIERRA SPACE CORPORATION //

Flight forward

demonstrator

(Current effort)

Source: Sierra Spa

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited

Demand to and from ISRU plant

X denotes the demand exists but has not been quantified or is proprietary

* Denotes rough number of the correct order of magnitude

All values are estimated and noncommittal

Demand to ISRU Plant

	Electricity, Day, (Surge, watts)	Electricity, Night Survival (w)	Eléctricity (Night Operations. Kw)	Oxygen (MT/launch)	Hydrogen (kg/year)	Slag (kg/Day)	Carbon (kg/year)	Heat (watts)	Water (kg/year)	Liquification Services (kg/vear)	Water	co2
Blue Origin	х	1000	10*	x	х					x	x	
Cislunar Industries		150*	10*			50*	х					
Crescent Space		20	12*									
Fibertek		200	.13 5*									
Firefly Aerospace		10	.04*	0.6					x		x	
GITAI		10*										
Helios Project Ltd												
Honeybee Robotics												
ICON Technology, Inc.		10*	5*			720						
Nokia		100										
Northrop Grumman		х	х									
Redwire Space												
SpaceX				200								x

Demand From ISRU Plant

	Communication to Earth (Mbos)	Communication to Moon (Kbps)	Electricity, Day (watts)	Electricity, Night (Watts)	Methane (MT/Landing)	Hydrogen (Mt/Launch)	Lunar Regolith (kg/day)	Water (kg/year)	Oxygen (Only in specific scenarios)	Empty Tankage Rental	Transport to Lunar Surface
lue Origin	2-5	30	Х			X			Х	Х	X
islunar Industries											
rescent Space Services	2-5	30									
ibertek	2-5	30									
irefly Aerospace											
ITAI USA							50*				
elios Project Ltd									X		
oneybee Robotics			Х								
CON Technology, Inc.											
okia	2-5	30									
orthrop Grumman											
edwire Space			Х								
paceX	2-5	30			10					X	Х

Source: Sierra Space & companies indicated

ۣ ڮٳڐۘۘڔۘۘڋ؉

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited

Source: Sierra Space & companies indicated

Commercialization

Break Even Time (year)

	Estimated Price	Rationale	Source: Sierra Space	Launch Cost (\$)
Sell Oxygen	~500-750 \$k/kg	Based off a ~25% discount of landing cost		
Sell Slag	~15-50 \$K/kg	Estimate based on how much it costs to p remove, and added value of reduced metals	ourchase regolith,	robotic costs to
Sell Nighttime Electrical	~20-30X Day time cost	Covers fuel cell use, electrolysis, re-liquifi hydrogen	cation of oxygen	and storage of
Rent Oxygen/Hydrogen Rental	~300 \$k/kg	Based off a ~25% discount of landing cost. Quantities limited based on methane/hydrog	gen supply	
Sell Water	~500-750 \$k/kg	Rent hydrogen/oxygen for fuel cell use an water. Fee if not returned. Assumes 1% of	nd accept it back rental is lost.	in the form of
Buy Daytime Electrical	Market Rate	Electricity needs to be sold cheaper than it from earth	costs to develop	and ship panels
Buy communications	Market Rate	Priced by supply and demand of communication	ation suppliers	

Source: Sierra Space

<u>چاججہ ہ</u>

- ISRU Commodities expected to track with launch and landing cost
 - Materials sold at a discount to launch and landing costs
 - Currently at ~\$1M/kg

© 2024 SIERRA SPACE CORPORATION // 11

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited