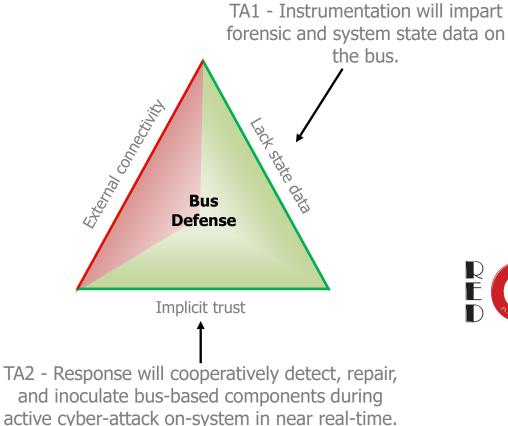
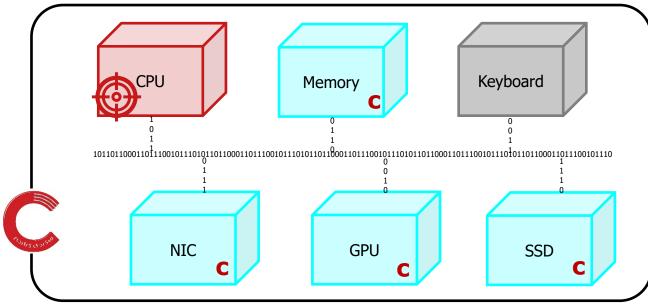


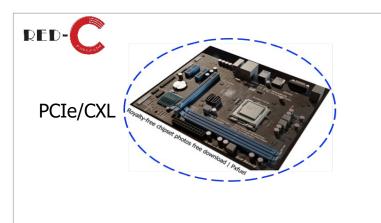
Reclaiming Bus-based Systems During Compromise (Red-C)


Explore algorithms to construct self-healing systems, by retrofitting individual components on a bus to function as forensic sensors that collectively monitor peers to detect, repair, and inoculate on-system during a cyber-attack.



Explore algorithms to construct self-healing systems, by retrofitting individual components on a bus to function as forensic sensors that collectively monitor peers to detect, repair, and inoculate on-system during a cyber-attack.

Modern buses are crossed multiple times by processes on a system to reach numerous specialized components to leverage their resources, thus leaving an ever-growing forensic footprint.

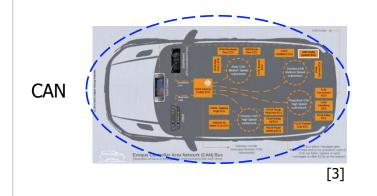


Highlighted in blue are a few of the PCIe components capable of detecting adversary activity during compromise.

Problem

- Components implicitly trust each other and are externally accessible
- Many components are externally connected, expanding attack surface
- System recovery is hindered by the lack of forensic information available on the bus

2015: PCIe bus Jellyfish GPU malware key logger [1]


Cont

Bus

Vulnerabilit

Implicit trust

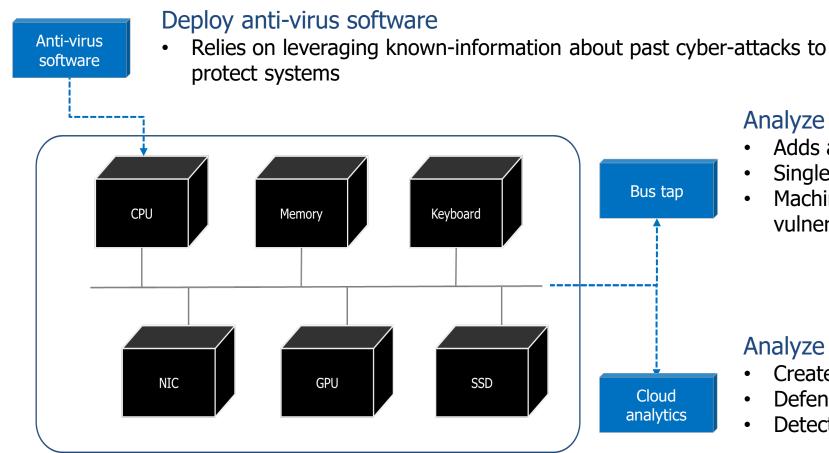
2024: Ransomware attacks continue [2]

2017: CAN bus attack launched from the internet reached doors, trunk, steering, and brakes [4]

2023: CAN bus physically tapped via the headlight giving thieves full access [5]

GPU – Graphical Processing Unit CAN – Controller Area Network PCIe – Peripheral Component Interconnect Express

Buses remain vulnerable to cyber attack



2024: Colorado State proof-of-concept commercial vehicle Electronic Logging Devices (ELD) attack reached steering, brakes, etc. [1]

ELDs are mandated by law to remain powered on.

Analyze traffic on the bus

- Adds additional SWAP
- Single point of failure
- Machine learning implementations have known vulnerabilities (e.g., DARPA GARD program)

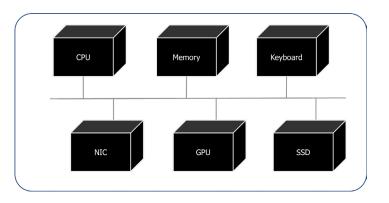
Analyze traffic in the cloud

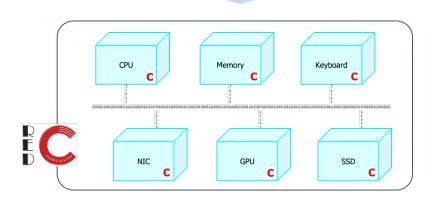
- Creates additional logs to store and secure
- Defense observations are limited to bus traffic
- Detection of a compromise occurs off-system

CAN – Controller Area Network GPU – Graphical Processing Unit SWAP – Size, Weight and Power CPU – Central Processing Unit NIC – Network Interface Card SSD – Solid State Drive

GARD – Guaranteeing AI Robustness Against Deception

Distribution Statement A. Approved for public release: distribution is unlimited.

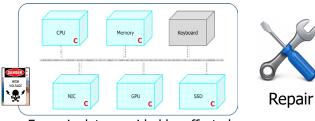



Red-C Approach

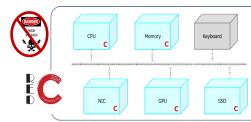
<u>TA1 - Instrumentation</u> will develop fine-resolution sensing via instrumenting a set of critical components to monitor each other cooperatively

CAN – Controller Area Network GPU – Graphical Processing Unit SWAP – Size, Weight and Power CPU – Central Processing Unit NIC – Network Interface Card SSD – Solid State Drive

Bus Defense



<u>TA2 - Response</u> will develop distributed algorithms for


remove the vulnerability used by the attacker on-system

components to cooperatively detect, maximize recovery, and

Attack detected via distributed consensuses

Forensic data provided by effected components enables restoration

Red-C data enables on-system code and configuration modification

[2]

Distribution Statement A. Approved for public release: distribution is unlimited.

Each component in a system must consider what it can see, what it can say, and who it can inform

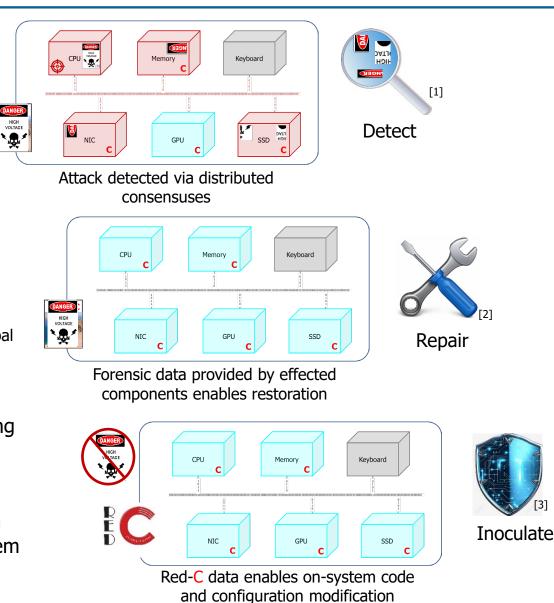
Challenges

- Instrument firmware as distributed forensic sensors creating unique and immutable signals at the component level
- Coverage of forensic signal for critical bus components
- Components have scarce availability of computation, limited bus bandwidth, and contending with the attacker(s) in the defined system

Potential approaches

- Construct Forensic Observation Vectors (FOV) [1] derived from the forensic data collected on components including; computation, memory, and storage data
- A single FOV would act as a forensic instrument collecting relevant signals to inform detection of part of the cyber-attack kill chain (e.g., MITRE ATT&CK frameworks PCIe [2] and CAN [3])
- Gain trust in some of the components over time via decentralized attestation (e.g., zero-knowledge, encryption)

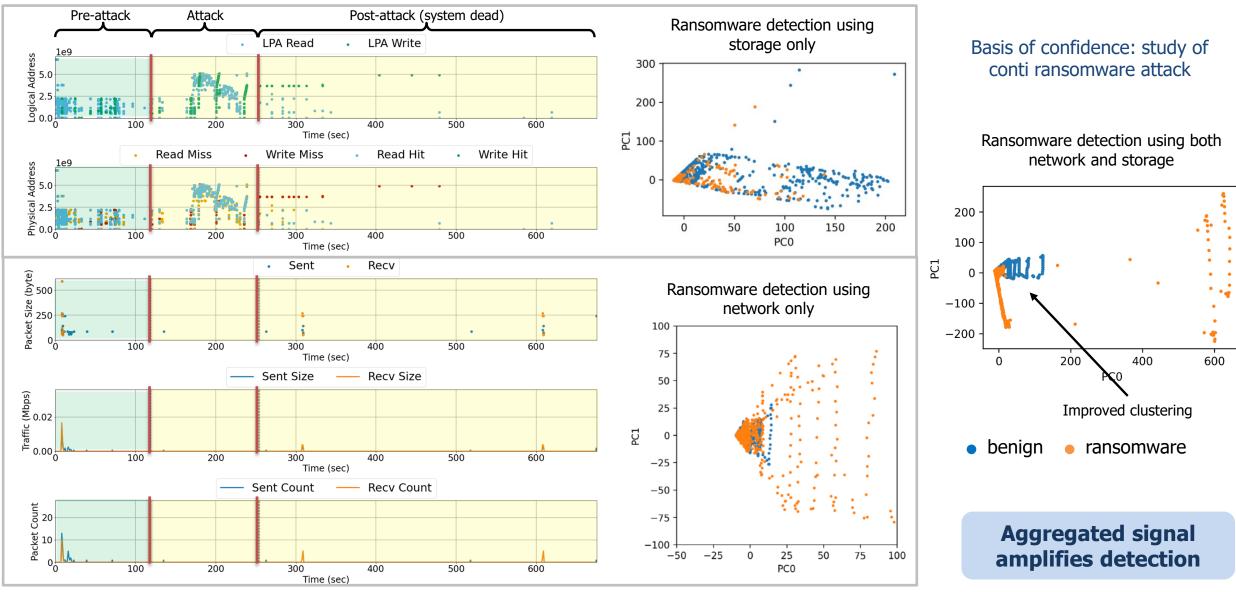
NYU Seedling Experimental Setup for Collecting Traces Windows Virtual Machine **SSD** Firmware Debugging PCIe Cable **OpenSSD** Board Desktop Workstation Firmware Instrumented in NYU seedling CPU, GPU, Keyboard, SATA controller, NIC, and SSD



Challenges

- Detection, repair, and inoculation are interrelated
- Explore distributed consensus algorithms with:
 - scarce availability of computation,
 - limited bus bandwidth, and
 - untrusted fragmented chronology forensic signals
- Recovering a system while the attacker(s) is in one or more components (e.g., preventing active sabotage)
- Automated strategic patch generation to inoculate systems
 - Identifying the root cause of the vulnerability in near real-time
 - Patching code on a running system with limited visibility while ensuring global and local state preservation

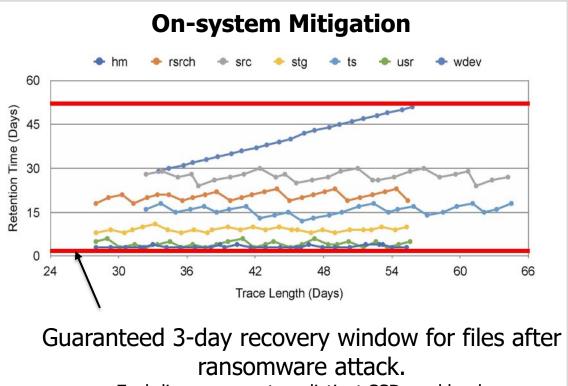
Potential approaches


- Cooperative agreement, where each of the components is monitoring its peers to detect and recover from attacks
- Decentralized on-system mitigation leveraging components with disparate computation and memory
- Inform and automate strategic patching, ranging from configuration change to real-time code generation and patching the running system

Detection basis of confidence – improved ransomware identification

Source for images on this slide: LastAct seedling

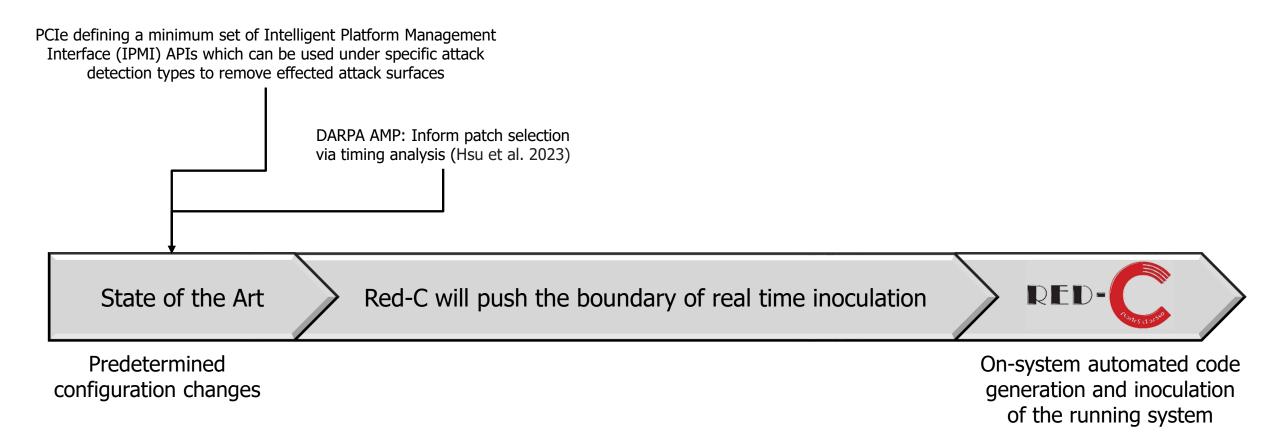
Distribution Statement A. Approved for public release: distribution is unlimited



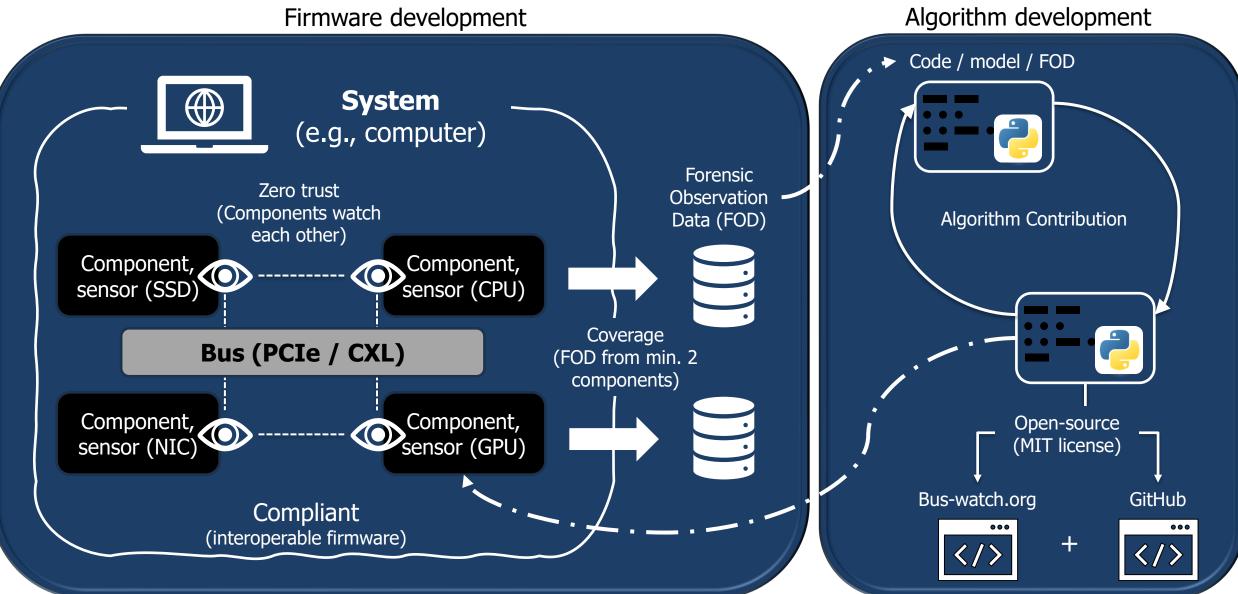
Leverage cooperative zero-trust to enable detection, on-system mitigation, and automate strategic patch generation

Basis of confidence

- NYU seedling result for component resource impact for a FOV was a 6% increase in processing and a storage increase of 0.3%
- Inform patch selection via timing analysis (Hsu et al. 2023)
- CAN bus
 - Decentralized cryptographic firmware attestation via Doubleratchet protocol (Khodari et al. 2019)
 - Applying Zero Trust Principles to Distributed Embedded Engine Control Systems. (Pakmehr et al. 2022)
 - Dynamic, Real-Time Analysis, Patching and Protection of Vehicle System Binaries (Brock et. al. 2023)
- PCIe/CXL NYU and Purdue seedlings
 - FOV sensors, NIC and SSD components, demonstrated collectively they were more effective in ransomware detection than independently
 - 3-day file recovery window guaranteed by the SSD



Each line represents a distinct SSD workload.



Proposals should detail their range of approaches to inoculation

Distribution Statement A. Approved for public release: distribution is unlimited.

Program Schedule

	PHASE 1 (prototype, 24 months)								
RED-C	FY25	FY26				FY27			
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
TA1 Instrumentation (PCIe/CXL)	Instrumentation 30% of components Instrumentation 60%				omponents	Instrumentation 100% of components < 5% computation and additional bus traffic			
	Firmware attestation < 3% computation and additional bus traffic								
тлр	Detection on-bus < 5% computation and additional bus traffic								
TA2 Response (PCIe/CXL)	Repair on-bus								
	Inoculation using system computation								
Test and Evaluation	Test samples collection								
	Dataset generation via seedling prototype Validation samples generation Establish baseline								
L		*	*				*	:	
					Test event / PI me	eting Validati	on event Op	en-source transition	

Distribution Statement A. Approved for public release: distribution is unlimited.

Metric	Phase 1			
Attack detection and recovery time	Laptop PCIe $* < 20$ sec, < 5 min			
Red-C's overhead as % of component and bus usage	Component <13%, Bus < 13%			
Accuracy of detection on previously unseen samples	Baseline			
Restoration quality	Critical system function* is <u>retained</u> and the attacker's ability to exploit the same vulnerability is removed.			
Time to implement Red-C in firmware from model on a new system	Baseline manual translation with standard development workstation			

* Critical system function – will be defined for each performer by the T&E team at Kickoff

* PCIe – will be defined after SRO for each bus-based system

www.darpa.mil