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• Creates opportunities from scientific discovery
• Invests in multiple scientific disciplines
• Focuses on mission-informed research

Defense Sciences Office: “DARPA’s DARPA”

DSO: Creating scientific surprise to support national security
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Finding Great DARPA Ideas 
Improve access to innovation from a diverse 

group of organizations
• With support, small technology companies and universities are more likely to be 

aggressive in pushing capabilities forward. Their products are the ideas they 
generate that can turn into prototypes. There are lots of ideas in the world, a few 
are good, while true DARPA ideas are rare. Need to fund as many as possible, and 
quickly, to find the pearls.

• Need to be efficient. Just spending money will not achieve the desired results.

Connect to new talent pools
• Paradigm shifts in technology often come from people who are 

not so deeply indoctrinated in established theories.

Find innovation from VC focused companies 
• Forge connections with these small entities at the beginning 

while they are wide-eyed about changing the world with 
innovative technologies to advance warfighter needs. 

Next breakthrough, 
paradigm-shifting 

technology

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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Finding Great DARPA Ideas 

IdeasPeople
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DARPA Innovation Fellowship

• 2-year Fellowship for early career scientists
• 32 recent Ph.D. graduates and 8 active 

duty military
• Develop and manage a portfolio of high-

impact exploratory efforts
• Paradigm shifts in technology often come 

from those not deeply indoctrinated in 
established theories

• Build a long-term pool of diverse talent that 
can focus on national security

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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What is the Innovation Fellowship?
A 2-year Fellowship at DARPA for early career scientists, who received their Ph.D. within the last 5 years. Fellows develop 
and manage the Advanced Research Concepts (ARC), a portfolio of high-impact exploratory efforts to identify breakthrough 
technologies for the Department of Defense.

Why become an Innovation Fellow?
Drive technological innovation 
Fellows have the opportunity to influence the direction of defense research through developing ARC topics, evaluating proposals, 
making funding decisions, and assessing the impact of further investment on problems of importance to national security.

Engage with prominent scientists
Fellows travel across the country to visit leading researchers at top university, industry, and government labs and learn about the 
revolutionary research they are conducting.

Strengthen your transferable skills
Fellows work across a broad range of scientific fields and gain a deep understanding of the big-picture scope of the state of the art of 
science and technology.

Advance your career opportunities
Join an extraordinarily rich, technologically-focused network of DARPA Program Managers, military service members, and scientific and 
technical experts.

DARPA Innovation Fellowship 

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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Finding Great DARPA Ideas 

IdeasPeople
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Advanced Research Concepts (ARC) – A DSO Experiment

• ARC solicitations will focus on answering 
high risk/ high-reward “what if?” question

• 8 topics targeted annually

• 30-60 ideas per topic

• One person funded per year per contract
• Streamlined proposal and contracting 

process

A new process to quickly capture and rigorously evaluate many ideas

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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ARCs vs. Seedlings/DOs/Programs

Seedlings
• Technology development to move 

from “disbelief” to “doubt”
• Effort: 1-2 years, limited personnel
• Target specific problem to enable 

specific capability

Programs
• Technology development to move from 

“possibility” to “capability”
• Effort: Multi-year, multi-disciplinary 
• Development of capability that scales

Advanced Research Concepts (ARCs)
• Exploratory efforts to evaluate “what if” this is 

a possibility
• Effort: 1 year, 1 FTE
• Precise question, broad opportunity, diverse 

answers

Disruptioneerings
• Technology development to move 

from “disbelief” to “doubt”
• Effort: 2 years, limited personnel
• Expeditated exploration of potential 

capability development

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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ARC Funding

Startups

Senior Grad 
Student or Postdoc

Small BusinessAcademia

Pre-seed 
funding

Growing 
startup

Medium/Large

Multiple funding rounds or 
established products

Funding 
Range

Who

DARPA 
Performer

$100K $300K

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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Imagining Practical Application for a Quantum Tomorrow (IMPAQT)

• The goal of each ARC is to invest in research that may 
result in new, game-changing technologies for U.S. 
national security

• Quantum computing has the potential to bring 
tremendous advancements to science and could have 
significant implications for national security

• IMPAQT will explore hybrid classical/quantum 
computational systems that are expected to be 
demonstrated within the next several years

ONISQ: Optimization with Noisy Intermediate-Scale Quantum devices
N*q: Number of Qubits (N) x Circuit Depth (p)

What are the applications for a quantum system with N*q > 
10,000, as a co-processor for a classical computational system?

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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Finding Great DARPA Ideas 

ARCsFellows

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)



Advanced Research Concepts (ARC)
• Portfolio of fundamental research efforts for 

assessing the impact of further investment on 
problems of national security importance.

• Several topics are released per year, each targeting 
a specific technical area.

www.DARPA.mil/ARC

What is the Innovation Fellowship?
A 2-year Fellowship at DARPA for early career scientists, who received their Ph.D. 
within the last 5 years. Fellows develop and manage the Advanced Research 
Concepts (ARC), a portfolio of high-impact exploratory efforts to identify 
breakthrough technologies for the Department of Defense.

Why become an Innovation Fellow?
Drive technological innovation 
Fellows have the opportunity to influence the direction of defense research through 
developing ARC topics, evaluating proposals, making funding decisions, and assessing the 
impact of further investment on problems of importance to national security.

Engage with prominent scientists
Fellows travel across the country to visit leading researchers at top university, industry, and 
government labs and learn about the revolutionary research they are conducting.

Strengthen your transferable skills
Fellows work across a broad range of scientific fields and gain a deep understanding of the 
big-picture scope of the state of the art of science and technology.

Advance your career opportunities
Join an extraordinarily rich, technologically-focused network of DARPA Program Managers, 
military service members, and scientific and technical experts.

DARPA Innovation Fellowship 

For more information on the Fellowship visit: 
https://www.darpa.mil/work-with-us/darpa-
innovation-fellowship

To apply submit CV/resume and cover letter to: 
fellowship@darpa.mil

U.S. citizenship is required

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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Discovering Unknome Function (DUF)
Dr. René Xavier, DARPA Innovation Fellow

Briefing Prepared for DUF Workshop

December 12, 2023
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The Importance of High-Confidence Gene Function Annotations

Explains biological phenomenon

Basis for novel disease therapies and biotechnologies
Improved crop yields

Increases sustainability
…. many, many more

Food Security Whole-Cell Modeling

Biomanufacturing

BiomedicalBiomaterial

Bioenergy

Adv Mater. 2023;e2211147. 
doi:10.1002/adma.202211147
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Reprinted with permission from J Agric Food Chem. 
2020;68(7):1935-1947. doi:10.1021/acs.jafc.9b06615. 
Copyright 2020 American Chemical Society

Image by Martina Maritan, Scripps Research



Challenges to Predicting 
Phenotype from 

Genotype

Noisy Input Data

 Functional Dark Matter

Batch Effects

 Missing Metadata

 Irreproducible Methods

Low-Throughput 
Experiments 

Risky Research to Fund

ARC Funding 
Opportunity:

High-Throughput Gene 
Function Annotation

36! – Six sigma

Unknome

High-
throughput
 
gene function 
annotation

Discovering Unknome Functions (DUF)

Oxford Uni. Press 2019, 47(5), 2446-2454; 
https://doi.org/10.1093/nar/gkz030

Well-annotated

Not enough information for automated assignment
Pseudogene or phantom gene

Depleting the Unknome through reproducible high-throughput 
gene function annotation methods

Why?

Why?

Why?

Solution

Outcome
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Current Capabilities

Technological Sweet Spot:

• Automated cultivation techniques, microfluidics, single-cell ‘omics, multi-omics, bioinformatics, cloud 

computing, whole-cell modeling, artificial intelligence, machine learning, computational microscopy, etc…

Cell 2012, 150(2), 389-401; https://doi.org/10.1016/j.cell.2012.05.044

big data analysis with bioinformaticsmulti-omics capabilities large-scale in vivo validation experiments

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Mol. Sys. Bio. 2018, 14(6), e8124; https://doi.org/10.15252/msb.20178124 Int. J. Mol. Sci. 2019, 20(6), 1276; https://doi.org/10.3390/ijms20061276



DUF experimental design 
should include:
ü Gene(s) of interest with 

little to no annotation
ü Quality control strategies
ü Well-documented metadata
ü Biological and technical 

replicates
ü FAIR data management
ü Annotation confidence 

scoring system

Technical Challenges

1. Predict gene function
Current Methods: gene knockouts; database homology; multi-omics data 
analysis; machine learning (ML); artificial intelligence (AI)
Challenges: incorporating molecular dynamics and spatiotemporal context; 
homology creep; versioning; computational power

2. Validate gene function
Current Methods: 
in vitro: protein-to-protein interactions; fluorescent imaging; molecular probes
biochemically: enzyme kinetics; stochastics; determination of substrates, 
intermediates, and products
in vivo: gene overexpression; phenotype rescuing 
Challenges: low throughput; immense biological diversity

5Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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Successful Abstract

A successful abstract will discuss:

• Innovative high-throughput methods capable of annotating unknown gene function

• A clear technical justification of the method

• Better than current state-of-the-art

• A clear research plan and experimental design

• The desired goals and output of the study

• The technical ability of the proposer to successfully pursue this research

• Equipment, facilities, personnel

• Preliminary data for full-time postdoc

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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DUF ARC Goals

• Diversity drives innovation: Cast wide net to catch 
innovative ideas for reproducible high-throughput gene 
function annotation

• High-confidence gene function annotation will benefit 
multiple research areas

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Rapidly generate high-confidence gene function annotations to provide critical knowledge for the advancement of 
biotechnology in areas vital to the DoD 



DUF ARC Agenda Review
Unclassified

Questions

Send all DUF ARC questions to email. Do not 
put ARC questions in chat or ask speakers.

DUF@darpa.mil

Answers will be given during DUF ARC answer 
session at 16:45.

Speaker Q&A: Immediately after talk, if time 
permits, and during breaks.

Time Speaker, Organization
0815-0900
0900-0915 Ms. Ana Saplan, ARC Manager
0915-0930 Dr. René Xavier, DARPA Innovation Fellow

0930-1000 Dr. Valerie de Crecy-Lagard, University of Florida

1000-1030

Dr. Anne-Ruxandra Carvunis, University of Pittsburgh
Dr. Sean Munro, MRC-LMB, Cambridge
Dr. Gloria Sheynkman, University of Virginia
Dr. Wilfried Haerty, Earlhamm Institute
Dr. James Faeder, University of Pittsburgh
Dr. Olaitan Awe, 
The Jackson Laboratory for Genomic Medicine
Dr. Samantha Maragh, NIST

1200-1300

Dr. Kristin Burnum, PNNL
Dr. Adam Deutschbauer, LBNL
Prof. Harris Wang, Columbia University
Dr. Frederik Schulz, DOE Joint Genome Institute

Dr. Zachary Charlop-Powers, Ginkgo Bioworks

Dr. Aindrilla Mukhopadhyay, LBNL
Dr. Eran Agmon, University of Connecticut Health
Dr. Christopher Bettinger, DARPA BTO PM

1430-1500
1500-1545
1545-1645
1645-1700

1700

Introduction to the DUF Workshop

2023 Discovering Unknome Function (DUF) Workshop
Dr. René Xavier | December 12, 2023 | Hybrid

Convene at One Boston Place
201 Washington St. | Boston, MA 02108

Workshop Objectives:
Understand the DUF Advanced Research Concept structure and how to apply.
**Send all DUF ARC questions to DUF@darpa.mil**
Understand the current capabilities for discovering gene function.
Understand the current challenges to discovering unknown gene function (The Unknome).

Topic
Check-in and badging at Convene
Introduction to Advanced Research Concepts

1030-1200

Lightning Talks (<10 min)
The meanings of function in biology
Approaches to tackling the unknome
Systematically discovering and harnessing phenotype-driving 
Annotation and characterisation of functional noncoding RNA
Multiscale modeling of intracellular networks and processes

Developing reproducible bioinformatics pipelines

QC and standards overview

Keynote - Solving the functional puzzle for unknowns: 
Lessons from 30 years of data mining

MORNING BREAK

Discovery of novel lineages to expand unknome

Genomics aided host and strain engineering for biotechnology
Integrative multi-scale modeling of cellular systems 

LUNCH
**Send all DUF ARC questions to DUF@darpa.mil**

1300-1430

Lightning Talks (<10 min)
Beyond the genome: multi-omics across scales
Characterizing bacterial genes with large-scale genetics
High-throughput culturomics to identify microbial dark matter

DUF ARC Answer Session
No-host social: Union Oyster House | 41 Union Street | Boston, MA

Identification and prioritization of biosynthetic gene clusters for 
commercial (meta-)genome mining

Progress in modeling microbial mechanisms
AFTERNOON BREAK

Small Group Discussions
Outbriefs of Small Groups

%6'o%JTDPWFSJOH�6OLOPNF�'VODUJPO
"3$o"EWBODFE�3FTFBSDI�$PODFQU
%"31"o%FGFOTF�"EWBODFE�3FTFBSDI�1SPKFDUT�"HFODZ
.3$�-.#o.FEJDBM�3FTFBSDI�$PVODJM�-BCPSBUPSZ�PG�.PMFDVMBS�#JPMPHZ
2$o2VBMJUZ�$POUSPM
/*45o/BUJPOBM�*OTUJUVUF�PG�4UBOEBSET�BOE�5FDIOPMPHZ
1//-o1BDJGJD�/PSUIXFTU�/BUJPOBM�-BCPSBUPSZ
-#/-o-BXSFODF�#FSLFMFZ�/BUJPOBM�-BCPSBUPSZ
%0&o%FQBSUNFOU�PG�&OFSHZ
#50o#JPMPHJDBM�5FDIOPMPHJFT�0GGJDF
1.o1SPHSBN�.BOBHFS
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Valérie de Crécy-Lagard 

Dpt of Microbiology and Cell Sciences 
& Genetic Institute

University of Florida

Solving the functional puzzle for 
unknowns: Lessons from 30 years of 

protein function discovery



The meanings of 
“function” in biology

Anne-Ruxandra Carvunis, PhD

Department of Computational and Systems Biology

Pittsburgh Center for Evolutionary Biology and Medicine

University of Pittsburgh School of Medicine

1



What is biological “function”?

Very complex and debated definitions. Much literature!



The ENCODE controversy

80% of the human genome is functional



The ENCODE controversy

80% of the human genome is functional

the fraction of the genome that is evolutionarily conserved through 
purifying selection is less than 10%



Evolutionary origins of new genes: de novo gene emergence

5

Carvunis et al., 2012, Van Oss et al 2019 

Non-genic
sequence

Novel geneProto-gene

Translation

When is a (novel) gene “functional”?
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The meanings of function in biology and the problematic 
case of de novo gene emergence Keeling et al eLife 2019

.. Found 5 meanings… 

.. and still interpreted sentences differently!

A philosopher, a biochemist, a rhetoric scholar and me..
.. Analyzed 20 abstracts in the de novo field…
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The meanings of function in biology and the problematic 
case of de novo gene emergence Keeling et al eLife 2019

.. Found 5 meanings… 

.. and still interpreted sentences differently!

A philosopher, a biochemist, a rhetoric scholar and me..
.. Analyzed 20 abstracts in the de novo field…



ATG

Contribute to cellular physiology…

Wacholder et al, 2023Intraspecific pN/pS: 1.25 (0.83)
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Despite youth and absence of detectable selection:



DNA sequence Protein sequence Protein function

Mutation Frameshift Purifying
Selection

When is a (novel) gene “functional”?



10Intrinsic physical capacities

Interactions 
within 
system

Physiological implications

Evolutionary fate:
turnover or

 conservation

Keeling et al eLife 2019; Parikh et al Yeast 2022

Expression

My lab’s approach (and DUF dream): consider the different components of 
function independently and their relationship to each other
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Thank you!

Saurin Parikh

Drs Nartey, Keeling, Garza



Approaches to tackling the unknome

Sean Munro

Matthew Freeman

Tim Stevens



Genome sequenced in 2003
~20-30 of these genes have no known molecular function

e.g. 3033 of these genes are not in PubMed

19,969 protein-coding genes

Human Unknome 

Complete genome sequences for 34,928 organisms (JGI GOLD) 

Unknome of life

>600 million proteins from meta genomics (EBI MGnify)



Quantify "known-ness" by collating experimental evidence from model 
organisms

1) Build an Unknome Database

2) Select c 200-300 well-conserved but unknown human 
proteins and examine using Drosophila genetics

Addressing the human unknome 

3) Use machine learning to predict function of unknown 
human proteins

With Matthew Freeman (Oxford University) and Tim Stevens MRC LMB



TIMM10
TIMM10
TIMM10
TIMM10
TIMM10
TIM10
TIN-10
TIM10 / TIM12
tim10
timm10
AT2G29530.3
-

Cluster UKP01389
MITOCHONDRIAL IMPORT INNER 
MEMBRANE TRANSLOCASE 
SUBUNIT TIM10

1) Constructing an Unknome Database

i) Cluster orthologous proteins from humans and 11 model organisms

pantherdb.org

“a comprehensive, annotated library of gene 
family phylogenetic trees”



TIMM10
TIMM10
TIMM10
TIMM10
TIMM10
TIM10
TIN-10
TIM10 / TIM12
tim10
timm10
AT2G29530.3
-

Cluster UKP01389
MITOCHONDRIAL IMPORT INNER 
MEMBRANE TRANSLOCASE 
SUBUNIT TIM10 5.9

2.8

0.5

2.5

0.5 

0.5

2.4

Weighted score

0.5

2.4/1.6

0.5 

0.5

Knownness

5.9

-

ii) Calculate knownness score for cluster 
from Gene Ontology terms

GO consortium: systematic annotation of genes 

using a controlled vocabulary

1) Constructing an Unknome Database



www.unknome.orgiii) Online: 
1) Constructing an Unknome Database

http://www.unknome.org
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Unknome is slowly shrinking
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Human unknome is shrinking but is still relatively neglected



2) RNAi screen for phenotypes using Drosophila

RNAi against 260 genes conserved in humans and flies

gene for dsRNA
hairpin

Gal4 expressed in
tissue of choice

Assays (quick, visual,
quantitative)

Lethals: 62 / 260 genes (24%)

59 / 198 genesSpecific screens:

Male fertility 11
Female fertility 2

Tissue growth 3

Proteostasis 6
Lifespan ROS 13
Lifespan -AA 9

Locomotion 6

Unknown proteins have key roles even in laboratory conditions

Functional screening in flies is painfully slow

Rocha et al. (2023) PLOS Biology e3002222



Use genome-wide data to group proteins involved in same 
processes.  Start by looking at stable protein complexes

Proteins in the same complex tend to have a similar level, 
phenotype, location and species conservation

3) Machine learning to predict the function of 
unknown human proteins

Gene expression
RNA-seq; 182 cell lines, 18,730 proteins

Protein abundance
Shotgun proteomics; 579 cell lines, 14,600 proteins

Subcellular location
Fractionation MS (LOPIT); 40 fractions, 6,575 proteins

Gene essentiality
CRISPR knock-out (DepMap); 990 cell lines, 17,190 proteins

Phylogeny
Orthologue similarity; 246 eukaryote species, 20,250 proteins



CO
M
PR
ES
SProtein abundance

profiles (14,000)

18,000 proteins

CO
M
PR
ES
S

Repeated
multi-head
attention

vs

Predictions

Train to minimise 
predictive error;
learn DNN weights

‘Truth’
(known complexes)

Input experimental 
profiles

Gene expression
profiles (18,000)

Phylogenetic
profiles (20,000)

+ further data…

CO
M
PR
ES
S

Adapt combined profiles 
to each query with 
attention layers

Proteome

Query protein

AD
D

Learn compressed,
fixed-length profiles

18,000×128

1×128

18,000

Query-adapted 

Train to identify which proteins are 
in the same complex 
(CORUM database of complexes)

18,000×128

Proteome attention deep neural network

12
8

18,000 proteins

18,000 proteins

128 values

12
8

12
8



Train on 50% Test on 50%

Abun: Proteomic abundance, mass spec
Expr: Expression, RNA-seq
Essen: Knock down gene essentiality (DepMap)
Lopit: Sub-cellular fractionation proteomics (LOPIT)
Phylo: Eukaryote phylogenetic profiles

Proteome attention deep neural network

All sources combine to make better predictors

Proteomic abundance is the best source

RecallRecall

Pr
ec

is
io

n

Pr
ec

is
io

n

Five sources of data:

Recall 0.57 Precision 0.77Recall 0.99 Precision 0.95



Testing predictions using AlphaFold 2

TM9SF2 - 10 hits from DNN:

Recent progress in protein 
structure/interaction prediction offers 

great opportunities

TM9SF2 TMEM87A

High confidence prediction (PAE)

Test by AF2 - one looks real
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Annotation and characterisation of 
functional noncoding RNA
Wilfried Haerty

wilfried.haerty@earlham.ac.uk



www.earlham.ac.uk

Evolution of the functional part of a genome

Haerty & Ponting. 2014. Annu. Rev. Genomics Hum. Genet.

Genome 
size (MB)

Protein-coding 
genes

3,102

2,731

1,047

393

169 13,968

21,411

16,878

21,834

19,955

non-codingcoding

0.0 0.80.60.40.2 1.0

M. musculus

H. sapiens

T. rubripes

D. melanogaster

G. gallus

Proportion of the genome

non-coding

constrained
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Impact of variation within the non-coding genome on phenotype
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We integrate large data sets to understand the impact of 
genetic variation on traits

Functional 
sequence 

characterization

Functional 
genomics

Population 
genomics

Comparative 
genomics Predict the impact of 

variation on gene expression 
and protein representation

Identify variants associated with 
phenotypes of interest including 
disease

• Novel transcripts
• Regulatory 

elements
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Non-coding RNAs found across kingdoms and in different flavours

Qureshi and Mehler. 2012. Nat. Rev. Neuro.
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Non-coding RNAs – functional loci
Name of lncRNA Mechanism of action Mutant phenotype

XIST X chromosome regulation (imprinting and X chromosomal dosage compensation) Mus musculus: females inheriting 
paternal allele were embryonic lethal; 
males fully viable

FENDRR Thought to act by binding to PRC2 and/or TrxG/MLL complexes to promote the 
methylation of the promoters of target genes, thus reducing their expression; essential for 
normal development of the heart and body wall

Mus musculus: Embryonic lethal

roX1, roX2 Required for sex chromosome dosage compensation in Drosophila (hyper-transcription of 
X chromosome in males)

Drosophila melanogaster: None, except 
when in combination: male-specific 
reduction in viability

HOTAIR The 5' end of HOTAIR interacts with a Polycomb-group protein Polycomb Repressive 
Complex 2 (PRC2) and as a result regulates chromatin state - required for gene-silencing of 
the HOXD locus by PRC2. The 3' end of HOTAIR interacts with the histone demethylase 
LSD1; epigenetic differentiation of skin over the surface of the body

Mus musculus: Spine and wrist 
malformations

COOLAIR Suggested to function in early cold induced silencing of FLC transcription in Arabidopsis 
thaliana

None reported

COLDAIR Required to recruit PRC2 to the FLC locus allowing deposition of the repressive H3K27me3 
chromatin mark. Binds PRC2 complex protein CURLY LEAF (CLF); required for stable 
repression of FLC after vernalization

Arabidopsis thaliana:  Late flowering after 
vernalization
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Chromatin modification in
• cis:

• recruitment of DNMT3 / PCR2
• transcriptional interference

• trans:
• recruitment of chromatin modifying complex
• transcriptional regulators

Fatica & Bozzoni. 2014. Nat. Rev. Genet.

LncRNAs – Many mechanisms

LncRNAs can act in :
• competition with mRNAs from miRNAs 

(ceRNAs)
• miRNA sponges
• modulation of RNA stability
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Annotated but not analysed
• Tens of thousands of loci have been annotated in Eukaryotes genomes

• The function and importance of the vast majority of which remain to be determined

• If biologically relevant the function can be carried out by:

• The act of transcription over DNA elements

• The transcript

•  A dozen loci have been knocked out and tested in vivo leading to contrasting results:

• lethality, developmental morphological defects (Xist, Fendrr) 

• phenotypes under specific conditions (BC1)

• no phenotypes (Visc2)
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Tens of thousands of loci – how many are relevant?
• Up to > 100,000 lnRNAs identified depending on publications

• Most are expressed in a single tissue, cell-type at low level

ØHow do we extract likely functional loci from transcriptional noise?
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From identification to validation

Identification
Conservation
Reproducibility

Validation

Genomes
Annotations
“Omics” data

Transcriptome
ChIP-Seq
CAGE

• Natural variation
• Knock out / knock 

down
– Cellular impact
– Organismal 

impact

• Individual
– Cells
– Tissues

• Population
– Development
– Tissues

• Species
– Shared
– Specific
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Omic data integration for functional loci identification

Large scale 

transcriptomic data

• cells

• Tissues

• individuals

Primary

Annotation

Consolidated

annotation

Composition

Conservation

Omics

• CAGE

• ChIP-Seq

• ATAC-Seq

• …

Functional

prediction

Experimental

validation

• Network 

reconstruction

• Domain 

identification

• Genotypes 

integration



www.earlham.ac.uk

Omic data integration for functional loci identification

• If a lncRNA were to be biologically relevant, one would 
expect:

• Reproducible expression between individuals
• Associated genomic features
• Phenotype upon disruption
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In-vivo phenotyping of knockout / knockdown mutants 

Caenorhabditis elegans
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In-vivo phenotyping of knockout / knockdown mutants 
• Annotation of 3,397 lncRNAs using 207 publicly available RNA-Seq libraries

• Integration of all available epigenomic data 

• ChIP-Seq, CAGE-Seq, PAR-CLIP

• Selection intergenic lncRNAs
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In-vivo phenotyping of knockout / knockdown mutants 

Akay et al. 2020. BMC Biology
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In-vivo phenotyping of knockout / knockdown mutants 

Akay et al. 2020. BMC Biology

• Novel annotations of lncRNAs in C. elegans

• Generation of knockout mutants for 10 multi-exon lncRNAs
• No evidence for sterility, embryonic lethality or abnormal body development
• Reduction of brood size for 6 knockouts
• Reduction of growth rate for 4 mutants

• Phenotypes recapitulated for 2 loci when using knockdown
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Omic data integration for functional loci identification

age
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Reproducibility of expression

• 4,232 (21,092) new loci annotated

• up to 65% of lncRNAs found in less 

than three individuals

• 278 lncRNAs identified in all 

individuals

lncRNA mono-exon

lncRNA multi-exon

coding mono-exon

coding multi-exon

29.7%
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Reproducibility of expression

• Conservation
• Composition
• Epigenetic marks
• eQTLs / GWAS hits

lncRNAcoding
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Identification of functional lncRNAs 
• Tens of thousands of lncRNAs have been annotated

• Signatures associated with likely functional loci can be 
detected

• Expression

• Reproducibility

• Nucleotide composition

• Conservation

• Chromatin marks

• We have developed approaches to detect motifs (Poddar et 
al. 2023. arXiv  arXiv:2311.12884v1 )

• We can predict mechanism (transcript vs transcription)

• Observation of phenotypes upon knockout / knockdown

Haerty and Ponting. 2015. RNA
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From locus identification to function – Need for high-throughput assays

• High-throughput assays using human iPSCs
• Multimodal Perturb-Seq

• Dropout assays
• Positive selection assays

• Use of model organisms for in-vivo phenotyping:
• Estimation of relative and absolute fitness
• Effect of interacting genes

Dixit et al. 2016. Cell.
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Motivation for studying Cell Decision 
Processes

Goals
• Develop predictive models 

of signaling networks
• Understand mechanisms 

that control outcome
• Exploit understanding to 

develop new control 
strategies for medicine and 
engineering

The Biology of Cancer (© Garland Science 2007)

• We use an approach called “rule-based modeling” (RBM) to build and 

simulate models

• BioNetGen is software for rule-based modeling that our group maintains and 

develops



Challenges of modeling cell regulatory networks
• Proteins are multi-functional

• Representing their known interactions requires 
handling of combinatorial complexity

multiple sites of binding

multiple sites of posttranslational modification

Small number of components and interactions èhuge number of possible species and reactions

Small number of rules



What is Rule-based Modeling (RBM)?
Rules define the interactions of molecules

LYN(SH2) + FceRI(bY_218~P) <-> LYN(SH2!1).FceRI(bY_218~P!1) kpL, kmL

“Lyn SH2 domain binds to phosphorylated Tyr 218 on the β subunit of FcεRI ”

Reactants Products Rate Law

bond

“Don’t write don’t care” – elements not mentioned may be in any state
è One rule can generate reactions involving many different species 

Reaction rate determined by Mass Action kinetics
  rate forward = kpL*[Lyn(SH2)]*[FceRI(bY_218~P)]

Rule:



Rules bridge between molecular and cellular 
scales

Ras
Molecular scale

Network scale

Rule-based model

2
1

2



Rule-based modeling enables knowledge 
representation on a large scale

FcεRI model

Faeder et al., J. Immunol. (2003)
Chylek et al., Mol. BioSys. (2011)

• Precise encoding of modeled structures 
and interactions

• User avoids combinatorial complexity
• Amenable to visualization
• Extensible as knowledge base grows



Rule-based modeling enables knowledge 
representation on a large scale

FcεRI model

Faeder et al., J. Immunol. (2003)
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AI Technologies Enabling the 
Development of Large Scale Models



AI Technologies Enabling the 
Development of Large Scale Models



AI Technologies Enabling the 
Development of Large Scale Models



Dream/Vision

Unknown 

Gene 

Sequence

Predicted 

interactions

Network Models
Network Models

Network Models
Network Models

Network Models

Predicted 

Phenotypes
Predicted 

Phenotypes
Predicted 

Phenotypes

Structure-

based 

Prediction

Manual 

Curation and 

Automated 

Model 

Assembly

Sensitivity to 

predicted 

interactions



Building 

Reproducible 

Pipelines December 12, 2023
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What is reproducible code?

Code is reproducible if:
- the result of  an analysis does not depend on the specific 

computational environment in which data processing and 
analysis originally took place

- Workflow will produce the same result when re-run or 
run on different computing platforms



Framework for reproducible code

1. Collect data

2. Develop the pipeline/codes

3. Generate Output

4. Interpret the Output



Framework (Omic Data Science)

1. Collect data (Biomedical, Omic Sequences etc.)

2. Curate Data

3. Develop the pipeline/code

4. Interpret the Output and Present data (advance our 
understanding of  biology and health)



Write Code and Publish it in a findable 
Repository (GitHub)

1. Data
2. Accessions (SRA, GEO, ENA, RefSeq, Genbank)
3. Figures
4. Scripts
5. Docs
6. Output
7. Workflow (Step by Step sequence of  tasks)
8. Notebooks for Demonstration
9. LICENSE (Open license)
10. README.md



Workflow Management Systems 
enable Reproducible Coding

1. Nextflow (Interoperability, Component Reuse, Re-
entrancy, Parallelisation, Allows use of  containers, 
Reproducibility)

2. Snakemake (Python)
3. Cromwell (WDL/CWL)
4. Galaxy



Automate your Pipelines

Language depends on what you’re comfortable 
with and your application:
1. Bash
2. Python
3. Perl
4. Java
5. C/C++ and others …



Some Life Science Project Categories

1. Bulk Transcriptomics, Metagenomics, Human Genomic 
Variation, Pipeline Development, Biomarker Discovery, 
Cheminformatics, Clinical Applications, Drug and 
Vaccine Design, Antimicrobial Resistance, Population 
Genomics, Genome Wide Association Studies, Polygenic 
Risk Scores, Mendelian Randomisation, Structural 
Bioinformatics, Software Development, Epigenomics, 
Oncology, Plant Genomics and Machine Learning.



Want to start writing reproducible 
code?

- You can start practicing by using public data 
(SRA, GEO, ENA, RefSeq, Genbank)



Research Standard

Open Science:
1. Improve the accessibility, quality and efficiency of  

science
2. Open Access Articles (APC can be expensive)
3. Research data, code and pipelines are FAIR:
(Findable, Accessible, Interoperable, Reusable)
Documentation: add comments to your code
If  we’re not sharing our data when annotating these 
unknown genes, it’s not helpful.



Thank you!

laitanawe@gmail.com





Beyond the 
genome:

multi-omics 
across scales

Kristin Burnum-Johnson



Basics of Biological Function

Phenome (n). The set of all phenotypes expressed by a 
cell, tissue, organ, organism, or species.



Genome-only based strategies only reveal part of the picture

• Our ability to READ DNA far surpasses our ability to UNDERSTAND the information it contains

• Vast majority of genes have unknown/non-validated functional annotation for proteins encoded
• 6,000 of the human genome’s ~20,000 genes are still unknown

• 70% of 154M microbial proteins are unannotated



The flow of molecular information → phenotype

Genome
Gene content 

& mutations

Transcriptome 

Gene regulation 

& expression

Proteome 
Protein content, activity 

& post-translational 

modification 

Metabolome 
Metabolite 

presence and 

fluctuations 



The proteome conveys function 

Burnum-Johnson, et al., New views of old proteins: clarifying the enigmatic proteome.  2022 21DOI: (10.1016/j.mcpro.2022.100254) 



Understanding biological functions through molecular networks

Adapted from Burnum-Johnson, et al., New views of old proteins: clarifying the enigmatic proteome.  2022 21DOI: (10.1016/j.mcpro.2022.100254) 

Metabolites

Post-translational modifications



Peptide Ids

AGTYALK

GLGADSPR

PPGFSPFR

ITLENSDAFYK

Extraction Separate Mass spectrometry Process DataProcess
Select

Samples

Generalized approach for MS-based omics

Elution Time m/z

Digest/Leave intact

Isotopically label

Enrich

Chemically block

Fractionation

Long/short gradients

Ion mobility

Orthogonal solid phases

Dissociation types

Label Free/Labeling

Database/Tag

SRM/PRM

DIA/DDA

The biological question drives the approach
Discovery proteomics, targeted proteomics, Post-translational modification (PTM), etc.

Mass Spectrometry



Capturing multidimensional biology

Metabolome (Metabolites, Lipids, etc.)

Protein expression 
Post Translational Modifications (PTM)

RNA
mRNA splice isoform

PARTS LIST

MOLECULAR NETWORK



Why 
study 
molecul
ar 
network
s in a 
spatially 
constrai
ned 
manner

• Most phenotypes are observed at a global level

• Many cell types or species contribute differentially to the 
global phenotype.

• Increasing the spatial granularity of the measurements 
enables the understanding of how each component of a 
system contributes to the overall phenotype.

Microbial Community with 
phenotype of interest

Activity zone Efficiency of the overall process
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Sample embedding 
(HPMC with PVP) 

Cryosectioning
 (12µm thick)

Metabolome Informed Proteome Imaging (MIPI) 
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Fungal Garden Ecosystem

• Map what microbes, enzymes, proteins, 
lipids, metabolites and activities can be 
correlated with microscale regions in this 
ecosystem 

• Perform lipidomics, metabolomics, & 
proteomics on 12-micron thick fungal garden 
sections

• Obtain mechanistic knowledge on how 
lignocellulose is degraded in this ecosystem 

Marija Veličković, Ruonan Wu, Yuqian Gao, M. Thairu, D. Veličković, N. Munoz, C. Clendinen, A. Bilbao, R. Chu, P. Lalli, K. Zemaitis, C. Nicora, J. Kyle, 
D. Orton, S. Williams, Y. Zhu, R. Zhao, M. Monroe, R. Moore, B.-J. Webb-Robertson, L. Bramer, C. Currie, Paul Piehowski, K. Burnum-Johnson.         
Mapping Microhabitats of Lignocellulose Decomposition by a Microbial Consortium. In press Nature Chemical Biology (2023)



Sample embedding 
(HPMC with PVP) 

Cryosectioning
 (12µm thick)

MALDI-FTICR Mass Spectrometry Imaging 

Spatial 
Metabolomics

Laser 
irradiation

Laser ablation-based MS

To MS
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Fungal Garden Ecosystem

Spatial Metabolomics

• Matrix-assisted laser desorption/ 
ionization (MALDI) Mass Spectrometry 
Imaging profiles metabolites with a spatial 
resolution of 50-microns and correlate 
morphologically unique features with 
metabolome hotspots of interest

Metabolome Informed Proteome Imaging (MIPI) 

Marija Veličković, Ruonan Wu, Yuqian Gao, M. Thairu, D. Veličković, N. Munoz, C. Clendinen, A. Bilbao, R. Chu, P. Lalli, K. Zemaitis, C. Nicora, J. Kyle, 
D. Orton, S. Williams, Y. Zhu, R. Zhao, M. Monroe, R. Moore, B.-J. Webb-Robertson, L. Bramer, C. Currie, Paul Piehowski, K. Burnum-Johnson.         
Mapping Microhabitats of Lignocellulose Decomposition by a Microbial Consortium. In press Nature Chemical Biology (2023)



Sample embedding 
(HPMC with PVP) 

Cryosectioning
 (12µm thick)

MALDI-FTICR Mass Spectrometry Imaging 

MicroPOTS 
Microdroplet Processing in One-Pot for Trace Samples

Spatial 
Metabolomics

Spatial 
Proteomics

Laser 
irradiation

Laser ablation-based MS

To MS
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Fungal Garden Ecosystem

Spatial Proteomics

• Tissue regions containing these activity 
zones are liberated from the slides with laser 
capture microdissection and processed in 
our PNNL developed Microdroplet 
Processing in One-Pot for Trace Samples 
(MicroPOTS) chip for high sensitivity mass 
spectrometry proteomics 

Metabolome Informed Proteome Imaging (MIPI) 



Sample embedding 
(HPMC with PVP) 

Cryosectioning
 (12µm thick)

12-µm fungal garden ecosystem section 
mounted on a glass slide

Microscale multi-omic mapping

MALDI-FTICR Mass Spectrometry Imaging 

MicroPOTS 
Microdroplet Processing in One-Pot for Trace Samples

Spatial 
Metabolomics

Spatial 
Proteomics

300 µm

300 µm

300 µm

300 µm

Laser 
irradiation

Laser ablation-based MS

To MS
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Fungal Garden Ecosystem

Metabolome Informed Proteome Imaging (MIPI) 



Plant cell wall

Lignin degradation

TCA 
Cycle

Ring 
cleavage

Syringate

Vanillate

Syringyl units

Guaiacyl units

p-hydroxyphenyl 
units

p-hydroxybenzoate

Protocatechuate
/gallate

β - β

β-O-4

β-O-4

β-O-4

β-O-4

Lignin

Lignin

Depolymerization

p-coumarate

β-5

ester

Microscale measurements enable prediction of function
Microscale multi-omic mapping

Lignin is a complex organic polymer made up of aromatic compounds in plant cell walls

Lignin degradation microscale 
activity zones Blue, Yellow and Red

Marija Veličković, et. al., Mapping Microhabitats of Lignocellulose Decomposition by a Microbial Consortium. In press Nature Chemical Biology (2023)



Lignin Degradation Pathways

Plant cell wall

Substrate Enzyme Product

✅ Detected ; ❌ Not detected 

Ring cleavage pathway

✅ ✅ ✅ ❌

Yellow = high 
metabolite intensity 

Marija Veličković, et. al., Mapping Microhabitats of Lignocellulose Decomposition by a Microbial Consortium. In press Nature Chemical Biology (2023)



Moving biological understanding from phenotype to the phenome

Mapping 
Phenotypes 

Dynamic 
measurements

Learn and Predict 
Molecular Networks

Metabolome (Metabolites, Lipids, etc.)

Protein expression 
Post Translational Modifications (PTM)

DNA
RNA
mRNA splice isoform

Parts List 

Integrate
Model

HypothesizePerturbations, an alteration of the function of a 
biological system induced by 

→ Molecular changes (DNA editing)
→ Environmental changes
→ Temporal changes
→ Spatial changes (across cells, intracellular)

Phenome (n). The set of all phenotypes expressed by a 
cell, tissue, organ, organism, or species.



Currently Limited in our ability to Phenotype

Pathways

Level 1
Singular Network

Level 2
Competing Networks

Level 3
Multiple Interacting 

Networks

Level 4
Dark Phenome



Pathways

Level 1
Singular Network

Level 2
Competing Networks

Level 3
Multiple Interacting 

Networks

Level 4
Dark Phenome

Currently Limited in our ability to Phenotype

Automation

Advanced computation approaches
ML and AI

Fast omics with high depth of coverage

Systematic dynamic measurements



Adam Deutschbauer, LBNL and UC Berkeley
AMDeutschbauer@lbl.gov

Characterizing bacterial genes with large-scale 
genetics



Major Problem: Many genes of unknown function in bacterial 
genomes

Anton et al. PLoS Biology 2013



• Mostly genetic approaches to 
infer the function of genes from 
their phenotypes

• We study many different 
bacteria

• Miniaturized and multiplexed 
assays to drive down costs

• Convert different functional 
assays to a next-generation 
sequencing readout

Our approach: ”High-throughput” 
microbiology



Team science

https://mcafes.lbl.gov/

https://enigma.lbl.gov/

https://gutworks.stanford.edu/

https://genomicscience.energy.gov/pnnlbiosystemsdesign/



Outline

• RB-TnSeq for characterizing gene function in bacteria

• 6 challenges

• If I funded an effort on gene function discovery in 
microbes



Functional genomics with 
Tn-seq

Measure phenotypes of most genes in the genome in parallel. 



Random barcode transposon site 
sequencing (RB-TnSeq) 

• Incorporate random 20bp DNA tags into the 
transposons (DNA barcodes)

• Abundance of mutants in the population can 
be measured by PCR and and sequencing the 
DNA barcodes (BarSeq)

§ BarSeq is very easy and scalable. Just mix your 
amplicons, run over single purification column in 
10 minutes, and submit for Illumina sequencing

§ We use BarSeq (with same U1 and U2 priming 
sites for):
§ RB-TnSeq
§ Lineage tracking in evolution studies (Tn7 

insertions into neutral location)
§ CRISPR interference
§ Assessment of genetic systems (magic pools)
§ Overexpression studies
§ CRISPR-associated transposons



Genetics data for 
many bacteria

• ~5,000 genome-wide 
RB-TnSeq assays 
across 32 bacteria

• Over 20 million gene-
phenotype 
measurements

• Phenotypes for over 
10,000 genes without a 
known function (many 
are conserved across 
different bacteria)

• Identify specific functions 
for hundreds of mis-
annotated enzymes and 
transportersExpand # of strains Expand # of 

conditions

On a single Illumina X 10B flow cell, we can sequence 3,072 RB-TnSeq (BarSeq) samples 
(~$3.50 per sample).



Challenge #1: Getting genetics up and 
running in diverse bacteria 

• Gram-positive bacteria are generally more challenging than Gram-negative

• But genetics with current tools often fails for Gram-negative bacteria as well

• Possible solutions: Testing libraries of genetic systems against a target 
microbe in parallel, overcoming host defense systems, improved DNA 
delivery methods

Test thousands of different vectors in parallel (magic pool)

Take advantage of:
• DNA synthesis
• Parts-based cloning
• Long-read DNA 

sequencing (PacBio 
and Oxford 
Nanopore)

Liu et al. mSystems 2018



Challenge #2: Propagating inferred gene 
functions to new genes/genomes 

• It’s not straightforward getting genetics-based gene annotations into established databases 
(like UniProt) 

• Propagation of updated gene annotations to new genomes also isn’t straightforward

• Possible solutions: GapMind, better communication/integration between stakeholders



Challenge #3: Pooled mutant fitness assays aren’t 
ideal for non-growth based phenotypes

• Pooled fitness assays (like RB-TnSeq) are great for growth-based assays, like nutrient 
conditions (C, N, S, P sources), stress conditions, etc.

• They’re not good for secondary metabolite discovery, secreted factors. 
• Most genes do not have a strong phenotype under laboratory conditions 

• Possible solutions: Assays using archived collections of individual mutants, new method 
development to more systematically characterize gene function for other “categories” of 
genes (like second metabolites)



Challenge #4: Availability/cost of compounds 
for chemical genomic screening 

• Compounds of interest are often quite expensive, or not commercially available

• Possible solutions: Spend a lot of money, partner with chemists



Challenge #5: Large-scale functional 
genomics typically requires isolates

• Many bacteria are currently uncultivated, so we’re currently not assaying a significant fraction 
of the gene space

• Possible solutions: Get more microbes into cultivation, Microbial community editing, 
heterologous expression of DNA (random and via DNA synthesis) in diverse hosts



Challenge #6: Manual Inference of gene 
function from mutant phenotypes

• It’s still laborious to manually examine data to make new discoveries

• Possible solutions: GapMind-like tools to quickly identity the “unknowns” in metabolism, 
AI/machine learning

• Neural network-based approach

• SwissProt database used for training model

• Contrastive learning-based approach

• SwissProt database used for training model

For testing performance, both studies used >100 bacterial enzymes 

that we annotated using RB-TnSeq data



ML methods work OK, but there’s room for improvement

• Accuracy of predictions 
drops at finer levels of 
classification

• Network fails to make 
predictions at higher 
resolution classifications

• Performance is only marginally 
better than BLASTp



If I were funding a large effort 
to characterize bacterial 
genes….

• I’d fund a network of researchers to focus on bacterial gene function 
discovery:

• Core teams with proven technology (tn-seq, rna-seq, small RNAs, (exo)metabolomics, proteomics, etc.) 
would apply their methods at scale to thousands of diverse bacteria (would engage the community for 
their favorite microbes and experimental conditions, and provide all genetic resources and data free of 
cost and prior to publication)

• Additional funds would go to high-risk, high-reward technology development projects (Charge could be: 
“Scale a technology that is informative about gene function in bacteria, such that it could be applied to 
1000+ bacteria in 2 years”; perhaps protein-protein interactions, gene regulation, genetic epistasis, 
structure-function studies, secondary metabolites). The successful tech would be blended into the 
larger core program.

• And I wouldn’t spend much time mining existing data from literature (like old gene expression data with 
microarrays), I’d just generate new data at a massive scale linked to accurate metadata, to ensure that 
it’s “machine readable” for the community



High-throughput Culturomics 
& Transcriptomics to Identify 
The Microbial Dark Matter

wanglab.c2b2.columbia.edu

Harris H. Wang, Ph.D.

DARPA DUF Workshop

December 12, 2023
Courtesy Y. Huang



Organism domestication is needed to study function at a 
mechanistic level

Genomics

• Systematic: record all info

• Comprehensive: get all strains (hard, but not impossible) 

• Cheap: minimizing labor costs/fatigue 

• Fast/on-demand: allow iterations

Culturomics

PhenotypeOrganisms Models

Need strains 
to do actual 
experiments!



Strain de-duplication through cultivation help fight against the 
“tragedy of the common” in microbiome research

U
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Species
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e

common rare

Strains/sequences sampled

easy challenging

More efficient 
sampling & analysis

A universal problem in

• Metagenomics

• Metatranscriptomics

• Community metabolomics

37



One of the most advanced environmentally 
controlled microbial cultivation system

Culturomics by Automated Microbiome Imaging and Isolation 
(CAMII) System

Huang et al, Nature Biotechnology 41:1424-33 (2023)

16X

2X



Extensively explored different media formulations and growth 
conditions

20x plates/samplefecal samples

100+ growth conditions: 
media, dietary, abx, rumen, 

vitamins, menaquinones, etc.



Using AI to predict microbial taxonomy directly from colonies

Colony detection & segmentation

Huang et al, Nature Biotechnology doi: 10.1038/s41587-023-01674-2 (2023)



microbial-culturomics.com

>32,000 strains in biobank to date

Building the largest microbiome biobanks from unique sources

http://microbial-culturomics.com/


A searchable and open database to share data & biobank

http://microbial-culturomics.com/

Huang et al, Nature Biotechnology doi: 10.1038/s41587-023-01674-2 (2023)

http://microbial-culturomics.com/


Towards illuminating the dark matter of the gut microbiome 
through systematic culturomics

Laura Marshall/NPG

Huang et al, Nature Biotechnology doi: 10.1038/s41587-023-01674-2 (2023)



Spatial growth patterns of bacteria on plates provide rich data to 
delineate species interactions

negative interaction positive interaction no interaction

Huang et al, Nature Biotechnology doi: 10.1038/s41587-023-01674-2 (2023)

B. adolescentis C. qucibialis

Species interactions



Prevalence and function of most widespread HGT elements

Huang et al, Nature Biotechnology doi: 10.1038/s41587-023-01674-2 (2023)



High-throughput transcriptomics to study drug-microbiota 
interactions

Bacteroides doreii
Collinsella aerofaciens
Dorea longicatena
Alistepes shahii
Bifidobacterium adolescentis
Parabacteroides distatonis
Eubacterium rectale
Bacteroides stercoris
Bacteroides uniformis
Bacteroides fragilis
Bacteroides vulgatus
Bifidobacterium longum
Fuscatinebacter sacchivorans
Escherichia coli
Bacteroides vulgatus
Bacteroides uniformis
Bacteroides fragilis
Fuscatinebacter sacchivorans
Eubacterium rectale

X
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Huang, NAR, doi: 10.1093/nar/gkz1169 (2019)
Shishkin, Nature Methods, 12(4):323-5 (2015)

RNAtag-seq
~$20/txome sample of 2M reads

Lisinopril, ACE inhibitor
Metoprolol, Beta−blocker
Omeprazole, PPI
Lenalidomide, Chemotherapy
Metformin, Anti−hyperglycemic
Levothyroxine, Hormone
Amlodipine, CCI
Venlafaxine, SSRI, SNRI or NDRI
Bupropion, SSRI, SNRI or NDRI
Trazodone, SSRI, SNRI or NDRI
Escitalopram, SSRI, SNRI or NDRI
Amitriptyline, SSRI, SNRI or NDRI
Citalopram, SSRI, SNRI or NDRI
Sertraline, SSRI, SNRI or NDRI
Paroxetine, SSRI, SNRI or NDRI
Duloxetine, SSRI, SNRI or NDRI
Fluoxetine, SSRI, SNRI or NDRI
Atorvastatin, Statin
Simvastatin, Statin

Ricaurte, Huang, et al, Nature Microbiology (accepted, 2023)

400+ drug-microbe combos



*Unpublished Work*

Bacteria produce robust transcriptional responses to top drugs

Ricaurte, Huang, et al, Nature Microbiology (accepted, 2023)



Human-targeted drugs promote 
antibiotic resistance responses

*Unpublished Work*

Enriched Pathways

• Transport
• Multi-drug resistance
• Two-component

systems

Ricaurte, Huang, et al, Nature Microbiology (accepted, 2023)



Example: Statin-induced host-factor toxicity

*Unpublished Work*Ricaurte, Huang, et al, Nature Microbiology (accepted, 2023)



Systematic bacteriology

Need more organized systematic data to train next gen models: 
transcriptomics, metabolomic, phenomic, imaging



Dream slide: culturomics + phenotypic/transcriptomic analysis 
with large-scale perturbations

culturomics genomics transcriptomics metabolomics/phenomics

X 10,000s of perturbations
- metabolites

- xenobiotics

- other supernatants

- growth conditions

- genetic KO/activation

High-density 

“perturbations arrays”

w/ 10k-100k 

perturbations 

“The Stimulator”

• Each well is addressable

• Leverage spatial omics

• Capture kinetic data

• Can train large AI models

Strain 1
Strain 2

Strain 3



THANK YOU FOR YOUR ATTENTION!



Giant Viruses: A Treasure Trove of Unknome Function
Frederik Schulz, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory

December 12th, 2023



Property of Ginkgo Bioworks

Identification and prioritization of biosynthetic 
gene clusters for commercial (meta-)genome 
mining
Zachary Charlop-Powers
R&D Director, Ginkgo Bioworks
December 12, 2023



Genomics aided host and strain 
engineering for biotechnology

Aindrila Mukhopadhyay
Senior Scientist

Biological Systems and Engineering Division
Lawrence Berkeley National Laboratory

Dec 12th 2023



Large multi-team projects at LBNL



Many carbon sources can be used across a range of 
host systems form conversion to many targets

Sugars

Aromatics

Biofuels

Bioproducts

O

HO
OH

O

NH

O

Martinez Garcia et al 2016 Env Mic

www.profacgen.com

education.nationalgeographic.org Mogana Das Murtey, Patchamuthu Ramasamy



Bioproduct case study: sustainable 
materials for dyes and pigments

Indigoidine
Indigo

https://aecom.com/blog/la-denim-city-2

http://www.tejidosroyo.com/



Microbes with versatile catabolism can be engineered 
for such final products but scale up is challenging 

sfp:bpsa
?



Scaled-up production using hydrolysate

Milled biomass

10% Cholinium lysinate

Mixing before pretreatment After pretreatment Enzymatic hydrolysis, 0 h

Enzymatic hydrolysis, 3 h
Sundstrom et al 2017 Green Chem

https://www.tmmedia.in/



Development of the optimal host.. 

maintain the right 

metabolism and 

fitness 

consume many

biomass components Engineer pathway to final 

products or precursors

Flux to key intermediate 

or product

tolerate intermediates 

and final products

tolerate biomass 

hydrolysates



Functional genomics approaches can reveal 
many non-obvious targets 

• Identification of key genes with 
known functions

• Role of non-metabolic genes 
and proteins

• New roles for known genes 
and proteins  

• Genes with unknown functions

• Roles of regulators and 
signaling systems

Kulakowski et al 2023 COBIOT



Functional genomics and systems biology as 
approaches to identify new gene targets

153

1199

13

241

78

36

39

Non Essential
Metabolic Genes

Essential 
Metabolic Genes

Increased Fitness
Bioreactor RB-TnSeq

Decreased Fitness 
Bioreactor RB-TnSeq

Eng, Banerjee, et al., (2020) Met Eng. 



Development of the optimal host.. 

maintain the right 

metabolism and 

fitness 

consume many

biomass components Engineer pathway to final 

products or precursors

Flux to key intermediate 

or product

tolerate intermediates 

and final products

tolerate biomass 

hydrolysates



Systems biology driven metabolic rewiring for 
growth coupling

• Genome Scale model driven designs

• 14 independent genes simultaneously deleted

• Product substrate pairing results in high 
production

Banerjee, Eng, et al., (2020) Nat Comm. 
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Iterative approaches using systems biology 
and functional genomics 

Products Substrate Pairing for aromatic carbon sources to 
bioproducts using Genome Scale Metabolic Models (GSMM) 

Omics reveals the roles of many metabolic and non-metabolic genes. 

Complete implementation involved use of curated models, fitness 
data, 7 gene deletions, 2 modifications from rational engineering 
guided by proteomics, and Adaptive Lab Evolution 

Eng, Banerjee, et al., (2023) Cell Rep. 

Conversion from hydrolysate 

Proteomics guided models



Discovery of new parts to enable genetic 
tractability 

Mizrahi I - Mob Genet Elements (2012)

Oakridge Field Research Center

Isolation of mobile genetic elements from ground water samples



Discovery of new parts to enable genetic 
tractability 

4l water filtered 

through 0.2 and 

10µM filters

Environmental Bacteria

Kothari et al (2019) mBio



Discovery of plasmid from the Oakridge FRC

Plasmid distribution based on size and types

• 1.7Mb plasmid, among largest ever found in a 
plasmidome studies

• 11 plasmids more than 50 kb in size  

• Seven different incompatibility groups 
were identified

Kothari et al (2019) mBio



Plasmids provide the first step to 
transformation and geneticsThe most ubiquitous plasmid was 

tested across several isolates 
Discovery of new origins 
to create new Synbio parts
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Codik et al (2023) in prep

Transform  non-model microbes

612 plasmids discovered

19 novel predicted origins

21 literature origins

9 promoters

2 kanamycin resistance markers

Magic pools library

Origin validation
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Applications of new gene functions 
Degradation of harmful substrates – toxins, 
explosives, biocidal agents

Conversion to valuable materials – 
biomanufacturing, therapeutics, chemicals, 
materials, fuels

Biosensor development – dynamic systems, 
diagnostics, tracking and measuring

Discover fitness targets – therapeutics 
Precision synthetic communities, Ag 
application, probiotics, complex manufacturing 



Our group at JBEI and LBNL

m-group.lbl.gov
www.jbei.org

Thanks to DOE BER for funding!!



Integrative, multiscale 
modeling of cellular systems

Eran Agmon, PhD
Assistant Professor | University of Connecticut Health

DARPA Discovering Unknown Function Workshop | 12/12/2023



“a computer model is feasible, and every experiment that 
can be carried out in the laboratory can also be carried out 
on the computer. The extent to which these match 
measures the completeness of the paradigm of molecular 
biology.” 

– Harold Morowitz 1984



A short history of whole-cell modeling

1973: Francis Crick 

and Sydney Brenner 

write about

“the complete 

solution of E. coli"

1984: first efforts to 

model E. coli 
pathways with ODEs 

(Domach et al.)

1984: Harold 

Morowitz advocates 

for a model of 

Mycoplasma

2012: whole-cell 

model of Mycoplasma 

(Karr et al.)

1999: E-cell: a 

gene-based model 

(Tomita et al.)

2007: Genome-scale 

metabolic model of E. 
coli with 1260 ORFs and 

thermodynamic 

constraints (Feist et al.) 

2013: Lattice 

Microbes: Spatial 

stochastic 

simulation of E. coli 
(Roberts et al.)

2020: large-scale 

mechanistic model of 

E. coli (Macklin et al. 

2020)

1999: The Virtual 

Cell (Schaff & Loew)

2022: Structural model 

of whole Mycoplasma 

(Maritan et al.)

2022: Dynamic model of 

JCVI-syn3A (Thornburg 

et al.)



• Combines a massive, heterogeneous set of measurements 

reported in E. coli in thousands of studies across hundred of 

laboratories over the past decades. >19,000 parameter values 

curated from this set.

• Linking these data via mechanistic models provides the most 

natural interpretation of the integrated dataset. >10,000 

equations.

• While all genes are expressed in the model, only 1214 of them are 

given a function (43% of annotated genes in EcoCyc). Mostly 

metabolic genes.

• Simulated in three environments: minimal medium (M9 salts plus 

glucose), rich medium (with added amino acids), and a minimal 

anaerobic medium.

Macklin, D.N., Ahn-Horst, T.A., Choi, H., Ruggero, N.A., Carrera, J., Mason, J.C., 
Agmon, E., ... & Covert, M.W. (2020). Simultaneous cross-evaluation of 
heterogeneous E. coli datasets via mechanistic simulation. Science, 369(6502)

“Whole-cell” model of E. coli 



Can we leverage modular software design 
to integrate heterogeneous data types and 
models of cellular/molecular functions?

76



port1: data_type1

port2: data_type2

77

composite

• Processes: consist of parameters, ports, and an update function.
• Stores: hold the state variables, map the variable names to their values, and apply the updates.
• Composites: bundles of processes and stores, wired together by their ports, and run together in time.

Vivarium: an "interface protocol" for connecting heterogeneous models, 
algorithms, and data into a hierarchical network that represents 
distributed, interacting processes.

orchestration

time



78
reproduces model from Macklin, et al. "Simultaneous cross-evaluation 
of heterogeneous E. coli datasets via mechanistic 
simulation." Science (2020)

Vivarium-Ecoli
• Re-created as 12 composable processes 

• functions for 1214 (43%) of well-characterized genes

• >19,000 parameter values 

• >10,000 mathematical equations 

• https://github.com/CovertLab/vivarium-ecoli 

https://github.com/CovertLab/vivarium-ecoli


79Skalnik, Cheah, Yang, et al. Whole-cell modeling of E. coli colonies enables quantification 
of single-cell heterogeneity in antibiotic responses. PLoS Computational Biology. (2023)
 



heterogeneous gene expression 

80

AcrAB-TolCAmpCgrowth on glucose

Skalnik, Cheah, Yang, et al. Whole-cell modeling of E. coli colonies enables quantification 
of single-cell heterogeneity in antibiotic responses. PLoS Computational Biology. (2023)
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Adding function: 
from flagella expression to behavior

Flagella

Agmon, E., & Spangler, R. K. (2020). A multi-scale approach to modeling E. coli chemotaxis. Entropy.



82
Agmon, E., & Spangler, R. K. (2020). A multi-scale approach to modeling E. coli chemotaxis. Entropy.

Chemoreceptors (Monod-
Wyman-Changeux model)

Flagella activity (stochastic 
switching model)

adaptation

sensation

thrust

ligand gradient

Motility and chemotaxis in a small population of E. coli WCMs

Adding function: 
from flagella expression to behavior



Response to Tetracycline Response to Ampicillin

Adding function: response to antibiotics

Skalnik, Cheah, Yang, et al. Whole-cell modeling of E. coli colonies enables quantification of single-cell heterogeneity in antibiotic responses. PLoS Computational Biology. (2023)
 



Simulating colony response to antibiotics

84
Skalnik, Cheah, Yang, et al. Whole-cell modeling of E. coli colonies enables quantification of single-cell heterogeneity in antibiotic responses. PLoS Computational Biology. (2023)
 



What needs to happen next
To represent all the molecular processes in a cell we need to integrate heterogeneous data. Ideally, each of the following can be 
experimentally determined, but may require inference algorithms to fill missing knowledge: 

• sequence of each chromosome, RNA, and protein; the location of each chromosomal feature including each gene, operon, promoter, and 
terminator; and the location of each site on each RNA and protein.

• structure of each molecule, the domains and sites of macromolecules, and the subunit composition of complexes. 

• subcellular organization of cells into organelles and microdomains. 

• participants and effect of each molecular interaction, including the molecules that are consumed, produced, and transported, the 
molecular sites that are modified, and the bonds that are broken and formed. 

• kinetic parameters of each interaction.

• concentration of each species in each organelle and microdomain.

• concentration of each species in the extracellular environment.

To connect a cell’s molecular composition with its behavior and function, we need:

• function/process curation pipelines, expanding upon the processes developed for vivarium-ecoli. This include modules for metabolism, TF 
binding, transcription, translation, chromosome replication, degradation, signal transduction, and more are required.

• whole-cell models made of these processes need to be calibrated with molecular data acquired across heterogeneous cell populations, in 
different environments, and with different experimental perturbations.
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Vivarium-Lab: Amin Boroomand (UConn Health, WHOI), Isha Mendiratta (UConn 
Storrs), Edwin Appiah (UConn Health), Jayde Schlesener (UConn Health, WHOI) 
Vivarium-Core: Ryan Spangler (Altos Labs), Chris Skalnik (MIT), William Poole (Altos 
Labs), Jerry Morrison (Stanford), Shayn Peirce-Cottler (UVA), Markus Covert 
(Stanford). Vivarium-Ecoli: Chris Skalnik (Stanford), Michael Yang (Stanford), Sean 
Cheah (Stanford), Matt Wolff (Stanford). BioSimulators: Jonathan Karr (Formic 
Labs), Ion Moraru (UConn Health), Alex Patrie (UConn Health), Logan Drescher 
(UConn Health), Jim Schaff (UConn Health), Herbert Sauro (University of 
Washington). Vivarium-Mechanobiology: Blair Lyons (Allen Institute for Cell 
Science), Jessica Yu (Allen Institute for Cell Science), Saurabh Mogre (Allen Institute 
for Cell Science), Karthik Vegesna (Allen Institute for Cell Science), Matt Akamatsu 
(University of Washington)

Thank You!

Contact: agmon@uchc.edu 

mailto:agmon@uchc.edu


Unknown Protein Function in Whole-Cell Modeling
Christopher J. Bettinger, Ph.D.

Biological Technologies Office (BTO)

Discovering Unknome Function (DUF)

12 Dec 2023

Distribution Statement “A”
(Approved for Public Release, Distribution Unlimited). 87



Whole-Cell 
Models

Overall Goal: Create physics-based 
computational simulations of cell behavior

Distribution Statement “A”
(Approved for Public Release, Distribution Unlimited). 88
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What is Whole-Cell Modeling?

WCM: A computer simulation that predicts phenotypes from genotype, including all molecular 
species and each molecular interaction.

Goldberg, et al. Curr Opin Biotechnol. 2018

Impact: A practical whole-cell model uses genotype to (a) predict disease, (b) anticipate 
pathogenicity, (c) accelerate design-build-test-learn cycles in synthetic biology.

WCM – Whole-cell model

Distribution Statement “A”
(Approved for Public Release, Distribution Unlimited).
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Overall landscape of models to describe cell behavior

0.1

10

1000

100000

10000000

1E+09

1E+11

1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04

Ph
ys

ic
al

A
cc

ur
ac

y 
(%

)

Length Scale (# of cells)

102

101

100

10-1

10-2

10-4 10-2 102100

MD

Agent-based models

Coarse grain

models

Genome-scale 

metabolism

MD – Molecular 
dynamics

Kinetic 

models
Constraint-

based models

10-6

Whole-Cell 

Models

In
cre

a
sin

g
 

d
a

ta
 in

 a
 

m
o

d
e

l
Art-of-the-
Possible

10-3

Increasing complexity capacity of a model

SoA: Models of cells are either: (a) physically accurate; (b) scalable, but not both!



91
Thornberg, et al. Cell. 2022

Whole-cell modeling SoA: Solve large systems of ODE across many cell “modules” to 
gain a comprehensive  chemical-physical representation of the cell.

WCM – Whole-cell 
modeling

WCM simulate doubling time 
& metabolism for one 

division of a synthetic cella 

1

2 3
1. Cryo-electron microscopy to 

image proteins
2. Experimental –omics data
3. High-performance computing

Whole-cell modeling provides a useful conceptual frame

aSynthetic cell composed of 493 genes (543 kbp genome)

WCM
Tools

WCM 
Demo

Capability Gap: Unable to handle large complexity
Knowledge Gap: Unannotated proteins & sparse data

Distribution Statement “A”
(Approved for Public Release, Distribution Unlimited).



92Thornberg, et al. Cell. 2022Karr, et al. Cell. 2012

Sparse DataComplexity Noise

Impact: An interpretable physics-based model of E. coli could predict evolution and 
accelerate synthetic biology research but there are challenges…

493 genes (mycoplasma)

4000 genes (E. coli)

10X

RNA expression in 8 runs
~35% of proteins 

in E. coli have 
unknown function

?

?

Metabolic network

What are “DARPA”-hard roadblocks to biological modeling of cells?

Distribution Statement “A”
(Approved for Public Release, Distribution Unlimited).



Leveraging modeling and automated “cloud labs” for WCM

Collect ground-truth data to 

inform & validate models

Measure & Verify

Technical Challenges
v Complexity: Solve high-dimensional systems of equations; 

Incorporating features to model cell-cell interactions

v Sparse Data: Getting values for initial state and parameters

v Noise: Models need to be robust and tolerate noise

Technical Challenges
v Automating large-scale experiments

v Handling of noisy and stochastic data from small sample sizes

v Human “out-of-the-loop” experimentation

v Being able to handle and curate heterogeneous data

Develop WCMs for complex 

organisms & multi-organism 

communities

Experiments and modeling exercises run concurrently – models & data help inform each other. 
Interest: WCM software that can predict the behavior of microbial communities.

Model & Predict
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What are the computational tools available for WCM?

Physics-
informed

Neural Networks
(2019)

Recent innovations in neural networks allow: (a) handling of sparse datasets; (b) 
descriptions of more complex systems with fewer “neurons”

“Liquid”
Neural

Networks
(2022)

Impact Implication for WCM

Can solve large systems of PDE with sparse data by using 
governing equations to connect “neurons”

PDE – Partial differential equations
NN – Neural network

v Can solve high-dimensional 
systems of PDE using sparse 
data sets

v Ideal for modeling biological 
systems where data is limited

Innovation

Neural networks are 
simplified by connecting 

fewer “neurons” w/ 
non-linear equations
(opposed to scalars) 

v Improves scaling ~10,000x
v Standard: 100,000 “neurons”
v Liquid:  19 “neurons”

v Fewer “neurons” makes networks 
more interpretableHasani, et al. Nat Art

Intelligence. 2012

Raissi, et al. J 
Comp Phys. 2019
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