Intrinsically Tough and Affordable Ceramics Today (INTACT)

Andrew Detor

Program Manager, Defense Sciences Office

Disruption Opportunity Information Session January 21, 2025

Key Properties	Metals	Ceramics
Ductility	High (>10%)	Low (<1%)
Fracture Toughness	High (>30 MPa \sqrt{m})	Low (<5 MPa \sqrt{m})
Compressive Strength	Moderate (~1 GPa)	High (~10 GPa) ^a
Elastic Modulus	Moderate (~200 GPa)	High (~400 GPa)
Density	Moderate (5-9 g/cm ³)	Low (2-6 g/cm ³)
Max. Use Temperature	Moderate (<1200°C)	High (2000°C+)
Corrosion Resistance	Highly susceptible ^b	Generally inert

^a Brittle failure mode in ceramics leads to 1/10th strength asymmetry in tension (~1 GPa) ^b Alloy and environment dependent

INTACT will explore approaches to engineer tough ceramics

- 10x stronger, 2x stiffer, $\frac{1}{2}$ density relative to metals
- Capable of operating at 2x higher temperatures
- Able to survive harsh environments

INTACT addresses the Achilles heel of ceramics (low toughness) to open a **new class of structural materials**

Why are Metals Ductile and Ceramics Brittle?

(Shear	stress	required	to	nucleate a	and	glide dislocations

	Nucleation (GPa)	Glide (GPa)
Metals	0.1-1	0.01-0.5
Ceramics	10-30	0.1-10

Dislocation activity is limited in ceramics, but it is not absent

Dislocation glide experimentally observed in 304 stainless steel

P. Fenetaud et al., Open Ceram, 15, 100396, 2023

Fiber pullout

Fiber debonding

Terione official

Fibers are added to impede cracking in ceramics leading to **quasi-ductility** Fracture toughness values approaching 30 MPa \sqrt{m} are possible

Liu H., Appl. Compos. Mater., 29(3), 2022 Beaumont, AFOSR Report, TR-79-0489, 1979

Polymer Infiltration and Pyrolysis (PIP) Process

Adapted from: Radhika et al., Silicon, 4:10141–10171, 2022

Lyu, et al., J. Advanced Ceramics, 11, 2022

- Infiltration steps <u>>50%</u> of manufacturing cycle time
- Densities <u>>90%</u> are difficult to achieve
- Material properties are heterogeneous based on fiber layup
- Limited to <u>simple shapes</u> radii of curvature constrained by fibers ($R_{min} \propto E_f d/2\sigma_f$); typical R_{min} >2mm

CMC manufacturing is complicated Lead times of <u>6 months or more</u> and <u>10's of \$k</u> are typical, even for simple shapes

Highly crystallized

Adapted from: Taillard, Design of Heuristic Algorithms for Hard Optimization, Springer, 2023, p.156

Today: <u>Equilibrium</u> Ceramic Processing

- Ceramic powders are densified into solid shapes by sintering at high temperatures for extended time with slow heating/cooling rates
- e.g., typical Si₃N₄ sintering cycle: 1800°C/5hrs, 5°C/min cooling
- Yields <u>near-equilibrium</u> material (low defect population)

INTACT will Explore Non-Equilibrium Processing

- Thermal processing routes enabled by, e.g., laser or electron beam methods (10³-10⁶ °C/s cooling rates typical)
- Introduction of mechanical work during production (e.g., forging)
- Other methods promoting *atomistic-scale* toughening

Toughness may be engineered into monolithic ceramic materials using non-equilibrium processing techniques

000

Mechanical Activating dislocations for plasticity with pristine Porz, et al., Materials Horizons, 8 (2021) dislocations 2 µm dislocationpristine toughened crack

- Dislocation content increased from to 10¹⁰ to 10¹⁴ m⁻² in SrTiO₃ through surface deformation
- 18x increase in toughness due to dislocation motion; no cracking observed around indent
- *Caveat: Demonstrated in 5µm surface layer*

Thermal

Leveraging precise thermal control during processing

- α/β dual phase Si₃N₄ achieved through spark plasma sintering (1500°C/5min, 150°C/min heating/cooling)
- Plasticity enabled through stress-induced bond switching at coherent α/β interfaces; <u>40%</u> ductility observed
- Caveat: Demonstrated on nano-pillars

Recent results hint toward the possibility of intrinsically toughening bulk ceramics through engineered defects

(5) https://www.ans.org/

If successful, INTACT would:

- Disrupt the highly specialized CMC manufacturing industry
- Broaden the industrial base for high temperature ceramic structures
- Reduce component lead times from months to days
- Enable production of advanced high temperature structures at scale

INTACT could have broad impact across a range of DoD and commercial applications

Program Details

Program Structure

Phase 1 (12 mos.) Coupon-level material development to meet property metrics

Phase 2 (12 mos.) Challenge part demonstration and property optimization

Program Metrics

Metric	Units	Phase 1	Phase 2
Flexural strength @ 1200°C ^a	MPa	300	500
Fracture toughness ^b	MPa·m ^{1/2}	15	30
Cycle time ^c	hours	48	24

Material Requirements

- Bulk material density $\leq 6 \text{ g/cm}^3$
- Flexural modulus >100 GPa at room temp
- Strength and fracture toughness must be measured at initial production and after a 1200°C/24hr anneal

^a As measured by ASTM C1211 (or equivalent)

^b As measured by ASTM C1421 (or equivalent) at room temperature

^c Total time from start of production to near net shape, excluding post-process machining & inspection

Challenge Part Requirement

Performers must propose a challenge part for Phase 2. The proposed challenge part geometry must be larger than a 1x1x10 cm envelope and contain features that are difficult or impossible to realize in conventional fiber CMC manufacturing (e.g., tight radii of curvature, thin-walled sections, and/or internal geometric features)

-

Phase

Ν

Phase

INTACT Milestones

Month 1	Kick-off meeting; Roles and effort level assigned
Month 4	First bulk (>1mm) test coupon produced
Month 6	Preliminary strength and fracture toughness testing
Month 9	Material microstructure stability assessed; Preliminary manufacturing process plans (MPPs) drafted
Month 12	Strength and fracture toughness test results with repeatability; Material datasheet drafted; Phase 1 final report

Month 13	Phase 2 kickoff meeting	
Month 17	Material property stability assessed	
Month 20	Process sensitivity study to define manufacturing window; Expanded mechanical property testing	
Month 23	Challenge part manufacturing demonstration complete	
Month 24	Final report including process, properties, future R&D, and industry adoption pathway	

Performers will be expected to provide, at a minimum, the following deliverables:

- Monthly presentation slides highlighting progress, challenges, and future direction
- Comprehensive, stand-alone **written reports** for Months 4, 6, 9, and 17 project milestones
- Draft (Month 9) and final (Month 23) manufacturing process plans
- A draft (Month 12) and final (Month 20) material datasheet
- Comprehensive manufacturing demonstration report at Month 23
- Phase 1 completion (Month 12) and project completion (Month 24) **reports**

INTACT is not constrained to any particular ceramic material composition or processing approach.

However, proposed approaches relying on *any of the following toughening mechanisms* will be deemed <u>out of scope</u>:

- Architected material solutions where toughness is derived through mechanical design and/or structural geometry
- Engineered residual stress distribution (surface and/or bulk) to delay the onset of cracking
- Any other process relying on traditional CMC toughening mechanisms, or any other extrinsic mechanism, operating at a <u>characteristic length scale exceeding 1μm</u>

The purpose of INTACT is to explore <u>intrinsic atomistic-scale</u> <u>toughening mechanisms in bulk ceramics</u>

- **Use graphics** to clearly articulate your breakthrough idea up front.
- Succinctly state what is novel in your approach and why you think it will be successful.
- Detail the ceramic material(s) and processing method(s) you will investigate and **why you selected these**.
- Thoroughly address every metric and requirement. Be quantitative. Simply stating "we will meet the metric" is not sufficient.
- Include an **objective risk assessment** and credible mitigation plans.
- Include specific examples on the **potential contribution** of your proposed approach to DARPA's mission.
- Limit regurgitation of assertions from the solicitation.
- Follow all proposal instructions, **use the provided templates**, and include all required attachments.
- Strategies focusing heavily on the <u>method</u> of discovery (e.g., artificial intelligence driven autonomous research) and lacking sound theoretical materials science underpinnings will be reviewed unfavorably.
- Include preliminary experimental results, modeling, simulation, or theoretical justification to **support any assertions in your proposal**.

- INTACT Program Announcement released: 15 JAN 2025
- Proposer profiles due: 24 JAN 2024 at 4:00pm EST
- Last day to submit questions to INTACT@darpa.mil: 7 MAR 2025
- Proposal due date: 14 MAR 2025 at 4:00pm EST (no exceptions!)
- Anticipated program start date: 12 MAY 2025

Contracting Overview

John Bauer

□ Research OTs – 10 U.S.C. § 4021

- A legally binding instrument other than a procurement contract, grant, or cooperative agreement for <u>performing</u> <u>basic</u>, <u>applied</u>, <u>or advanced research & development</u>
- Result of the effort is a study/whitepaper
- Can be awarded off the following solicitation types:
 - Broad Agency Announcement (BAA)
 - Program Announcements (DARPA-Specific)
 - Exploration Announcements (DARPA-Specific)

□ Prototype OTs – 10 U.S.C. § 4022

- A legally binding instrument other than a procurement contract, grant, or cooperative agreement used for <u>prototype</u> <u>projects</u> proposed to be acquired by the DoD
- Result of the effort is a prototype
- Can be awarded off the following solicitation types:
 - Broad Agency Announcements
 - Program Solicitation (DARPA-Specific)

□ What doesn't apply to OTs?

- Cost Accounting Standards
- FAR/DFARS/Agency specific acquisition regulations

What laws still do apply?

 Laws that would apply to anyone doing business in the U.S. (e.g. environmental laws, import/export control)

Interested in learning more?

Check out CMO's DARPAConnect Corner Webinar on Understanding Other Transactions:

Rapid Exploration Process Overview

Average Timeline from Announcement to Award for Program Announcements (PAs)

www.darpa.mil